Vibrational Spectra and Provisional Assignment of the $\Lambda(\delta\delta\delta)$ -Tris(1S,2S-cyclohexanediamine)iridium(III) Cation Spectra G. BORCH.^a P. KLÆBOE^b and P. H. NIELSEN^c ^a Chemistry Department A, The Technical University of Denmark, DK-2800 Lyngby, Denmark, ^b Department of Chemistry, University of Oslo, Oslo 3, Norway and ^c Chemical Laboratory II, The H. C. Ørsted Institute, DK-2100 Copenhagen, Denmark Dedicated to Jannik Bjerrum on the occasion of his 70th birthday The infrared and Raman spectra of $\Lambda(\delta\delta\delta)$ -tris-(1S,2S-cyclohexanediamine)iridium(III) chloride (Λchxn₃IrCl₃) and the corresponding N-deuterated compound (N-d₁₂-A-chxn₃IrCl₃) have been studied in the solid state and in aqueous solution in the region below 4000 cm $^{-1}$. Assuming D_3 -symmetry of the complex ion, a provisional assignment of the fundamental vibrations of species A_1 and A_2 is given, based upon the Raman depolarisation ratios and the relative intensities of the infrared and Raman bands. The results of a vibrational analysis using a 54-parameter generalized valence force field (GVFF), partly transferred from cyclohexane and the tris(1,2-ethanediamine)rhodium(III) cation, support the assignments. A complete interpretation of the spectra including the fundamentals of species E is proposed on this basis. Certain remaining problems which will have to be clarified in future work are discussed. The bidentate ligand 15,2S-cyclohexanediamine (chxn) and its optical antipode are representatives of the substituted 1,2-ethanediamines. Several stereochemical studies of these compounds have appeared, notably Corey-Bailar ¹ conformational analysis of five-membered chelate rings in metal complexes ² and chiroptical studies ^{3,4} correlating absolute configurations of analogous coordination compounds. Several crystal structures of such compounds are known ⁵ and have given a basis for these correlations. Furthermore, the antitumor activity of platinum(II) complexes with these ligands has been tested ^{6.7} and it shows significant antileukemic activity. However, the vibrational spectra of chxn complexes are not known. In previous papers 8-10 the vibrational spectra of the $\Lambda(\delta\delta\delta)$ -tris(1,2-ethanediamine)rhodium(III) cation (Λ-en₃Rh(III)) were investigated. A normal coordinate analysis (NCA) of the parent ion and seven isotopically labelled species using a 38 parameter GVFF allowed an assignment of all the fundamental modes. The present study dealing with the $\Lambda(\delta\delta\delta)$ -tris(1S,2S-cyclohexanediamine)iridium(III) cation (A-chxn₃Ir(III), Fig. 1) forms an extension of this work, but is more complex because of the larger ligands. Therefore, to test the application of the GVFF developed for Λ-en₃Rh(III), this force field was combined with GVFF values for the cyclohexane ring. An NCA was derived for Λ-chxn₃-Ir(III) based upon the most readily identified fundamentals of species A_1 and A_2 . The results, together with the predicted fundamentals of species E, are presented in this paper. ### **STRUCTURE** Crystal structures of Ir(chxn)₃ complexes have not yet been determined by diffraction methods. Thus, symmetry and molecular parameters were transferred from analogous structures, *e.g.* the crystal 0302-4377/79/010019-11\$02.50 © 1979 Acta Chemica Scandinavica structure ¹¹ of the congeneric $(-)_{589}$ -[Co $(+chxn)_3$]-Cl₃ pentahydrate. The complex ion in this compound has approximately D_3 -symmetry and the absolute configuration $\Lambda(\delta\delta\delta)$. The absolute configuration of the two carbon atoms in the ligand is S in agreement with a previous synthetic correlation³ and the cyclohexane rings have chair conformations. We have assumed that the preferred chair conformation of chxn in the complex ion is maintained in solution (cf. ¹H NMR evidence ¹² that chair conformation with diequatorial position of the amino groups is also maintained in the free or substituted ligand in solution). Moreover, by using the method of "active racemates". 13 Andersen et al. 14 concluded from X-ray powder photographs that $(-)_{589}$ -[Co(+chxn)₃]³⁺ and $(-)_{589}$ -[Ir-(+chxn)₃]³⁺ have the same absolute configuration, viz. $\Lambda(\delta\delta\delta)$. Hence the calculations in the present work have been based upon a $\Lambda(\delta\delta\delta)$ or $\Lambda(lel_3)$ structure assuming D_3 -symmetry (Fig. 1). The technique for establishing the equilibrium configuration of the Λ-chxn₃Ir(III) cation in cartesian coordinates was described previously. Since the octahedral radii of Ir³⁺ and Rh³⁺ are quite similar, the choice of bond distances and angles was based upon known structures of chxn₃Rh(III) complexes to C-C: 1.53 Å, C-N: 1.48 Å, Rh-N: 2.08 Å, tetrahedral angles of the chxn ring). The N-Rh-N angles were chosen to be 87°. Finally, the values C-H: 1.093 Å, N-H: 1.01 Å, H-C-H: 109°28′, and H-N-H: 111° were Fig. 1. The $\Lambda(\delta\delta\delta)$ -tris(1S,2S-cyclohexane("chair")-diamine iridium(III) cation viewed along the trigonal axis. chosen in agreement with previous calculations on tris(1,2-ethanediamine)rhodium(III) cation.⁸ We hope to improve these values in a forthcoming paper. #### **EXPERIMENTAL** Λ-chxn₃IrCl₃.aq was prepared as described by Galsbøl. 18 The analogous N-deuterated compound was obtained by dissolution in D₂O followed by evaporating the excess D₂O in a vacuum desiccator at room temperature. From spectra obtained in aqueous solution it appears that the exchange of hydrogen with deuterium at 20 °C is complete within 6 h. The spectra of the corresponding anhydrous compounds were obtained by drying the alkali halide pellets at 100-150 °C over P₂O₅ in vacuo until no further changes could be observed in the spectrum (ca. 24 h). The pellets containing the anhydrous complex appear to be quite stable to the exposure of moisture from the air and we had no difficulties in obtaining reproducible spectra from different samples. However, the IR spectrum of Achxn₃IrCl₃.aq changed somewhat in the regions around 1600 and 820 cm⁻¹ in different alkali halide discs and in Nujol mull as indicated by intervals in Table 2. The instrumental equipment and techniques employed in observing the Raman and infrared spectra have been described elsewhere. In addition, some of the infrared spectra were recorded on a Perkin Elmer spectrophotometer 580 covering the region $4000-180 \text{ cm}^{-1}$ and on a Bruker Model 114C fast scan Fourier transform spectrometer in the range $400-40 \text{ cm}^{-1}$. # NORMAL COORDINATE ANALYSIS The normal vibrations were calculated for the Λ -chxn₃Ir(III) and N- d_{12} - Λ -chxn₃Ir(III) cations as a full 67 body problem assuming D_3 symmetry. The 195 normal vibrations belong to the following irreducible representations: $33A_1(R) + 32A_2(IR) +$ 65E(R,IR). The NCA was performed as described for the tris(1,2-ethanediamine)rhodium(III) cation.8 This paper should also be consulted for a description of the internal and symmetry coordinates and the initial force field which was transferred as far as possible in the present calculations. Additional information on the cyclohexane rings is available from the investigations of Wiberg and Shrake 19 on cyclohexane and three deuterated species. Their procedure and final GVFF is compatible with ours,8 both based upon the method developed by Snyder and Schachtschneider.²⁰ In order to preserve the transferability of the GVFF the symmetry coordinates used for the Λ -chxn₃Ir(III) cation were constructed to include all the local and cyclic redundancies $(14A_1 + 8A_2 + 22E)$. These were eliminated automatically by the program during the calculations. From the observed IR and Raman spectra it was possible to select many bands which would be ascribed as fundamentals of species A_1 and A_2 from the Raman depolarisation ratios or the IR and Raman band intensities. However, an exploratory NCA indicated the fundamentals of species E to overlap extensively those of species A_1 and A_2 . Therefore calculations on the A_1 and Table 1. The final valence force constants for the Λ -chxn₃Ir(III) cation.^a | Symbol according to Ref. 8 | Value ^b | Symbol according to Ref. 19 | Value ¹ | |------------------------------------|--------------------|-----------------------------|--------------------| | K _r | 4.739 | K_{R} | 4.138 | | $\dot{K_{\rm d}}$ | 5.354 | $H_{\omega}^{^{n}}$ | 1.255 | | K_{R} | 4.408 | H_{τ}^{ω} | 0.202 | | $K_{\rm D}^{\rm r}$ | 3.722 | $K_{\rm d}$ | 4.570 | | $K_{\rm L}^{\rm D}$ | 1.906 | $H_{\gamma}^{"}$ | 0.681 | | $F_{\rm d}$ | 0.107 | $H_{\delta}^{'}$ | 0.537 | | F_{11} | 0.188 | F_{R} | 0.236 | | F'_{LL} | -0.08 | $F_{ m R\omega}$ | 0.441 | | H_{α}^{DD} | 0.519 | $F_{R\gamma}$ | 0.301 | | H_{ε}^{-} | 0.745 | , | | | H_{ν} | 0.712 | | | | H_{ψ} | 0.493 | | | | H_{R} | 0.436 | | | | H_{ω}^{r} | 1.571 | | | | $H_{\phi} = H_{\theta}$ | 1.150 | | | | H_{η}^{r} | 0.664 | | | | $F_{{ m R}\psi}$ | 0.318 | | | | $F_{\mathbf{D}\nu}$ | 0.380 | | | | $F_{\mathrm{D}\psi}$ | 0.435 | | | | $F_{L\omega}$ | 0.629 | | | | F_{ν} | -0.169 | | | | F_{ϕ} $F_{\phi} = F_{\theta}$ | 0.089 | | | | $F_{\phi} = F_{\theta}$ | -0.266 | | | | $F'_{\phi} = F'_{\theta}$ | 0.074 | | | | H_{τ} | 0.246 | | | | H_{Δ} | 0.161 | | | ^a All other valence force constants were transferred from Refs. 8 and 19. ^b In units of mdyn/Å (stretch constants); mdyn/rad (stretch-bend interaction constants) and mdyn Å/(rad)² (bending and torsion constants). A_2 blocks were done simultaneously until a satisfactory assignment was made. Using the converged GVFF the fundamentals of species E could be predicted and compared with the experimental results. Provided all the remaining relatively strong bands could be assigned to species E by this procedure, the NCA was considered satisfactory. Only those force constants which appeared necessary to ensure a reasonable good fit between the observed and calculated frequencies were included in the iterative procedure. The remaining force constants were fixed at the values obtained previously.^{8,19} By allowing the 35 force constants listed in Table 1 to vary, a rapid convergence was ensured with a standard error between the observed and calculated frequencies of less than 0.75 % for each of the four blocks considered, $(A_1 \text{ and } A_2 \text{ for } \Lambda\text{-chxn}_3\text{Ir}(\text{III})$ and $N-d_{12}-\Lambda$ -chxn₃Ir(III)). The calculated frequencies with approximate descriptions are listed together with the observed frequencies in Tables 2 and 3, which also include the tentative assignments of the fundamentals of species E. Despite the limitations imposed on the calculations the final force field (Table 1) falls within the range of known values from related molecules. We consider first the force constants related to the chelate rings listed in the first column of Table 1. By analogy to complex formation with NH₃, the replacement of Rh(III) with Ir(III) is predicted 21 to increase the strength of the metal-ligand bond. Thus, the corresponding stretching force constants, K_{I} , increases from 1.607 mdyn/Å in the tris(1,2ethanediamine)Rh(III) cation 8 to 1.906 mdyn/Å in the Λ-chxn₃Ir(III) cation. The corresponding increase in H_{ω} (0.76 \rightarrow 1.57 mdyn Å/(rad)²) and $F_{1,\omega}(0.22 \rightarrow 0.63 \text{ mdyn Å/(rad)}^2)$ indicate an increased resistance to bending of the metal-N-C angle (ω) . On the other hand, the added electron density in the metal-ligand bond should be followed by a decrease in the donor part of the ligand. It is satisfactory, therefore, that the force constants pertaining to the C-NH₂ group $(H_{\alpha}, H_{\beta}, K_{d}, K_{D})$ all decrease from the Rh(III) to the Ir(III) complex. The force constants of the cyclohexane ligand rings (listed in the second column of Table 1) cannot be directly compared with those of cyclohexane.¹⁹ The changes caused by substitution with the amino groups are uncertain, and the NH2-CH-CH-NH₂ moiety has been treated as part of the chelate,8 while the remaining part of the cyclohexane rings has been treated according to Ref. 19. However, the substantial increase in the force Fig. 2. The infrared (top, KI pellet) and Raman (middle, solid) spectra of $\Lambda(\delta\delta\delta)$ -tris(1S,2S-cyclohexane-diamine)iridium(III) cation and the infrared (bottom, KI pellet) spectrum of the corresponding N- d_{12} species. The water peaks at 3460 and 1625 cm $^{-1}$ in the bottom spectrum were caused by humidity in the KI. constant for C-C-C bending (H_{ω}) , $1.08 \rightarrow 1.26$ mdyn Å/(rad)²) from cyclohexane to the chxn ligand may be explained by an increased stiffness of the cyclohexane ring when involved in chelate formation. # RESULTS AND DISCUSSION The IR and Raman spectra of Λ -chxn₃IrCl₃.aq and the IR spectrum of N- d_{12} - Λ -chxn₃IrCl₃.aq are shown in Fig. 2. The observed frequencies of the parent compound are listed in Table 2, which includes a full assignment and description of the Table 2. Observed and calculated (calc) vibrational frequencies (cm⁻¹) of the $\Lambda(\delta\delta\delta)$ -tris(1,2-cyclohexane-diamine)iridium(III) cation with tentative assignments of the spectra and description of the fundamentals. | | Infrared ^a | | | Raman ^{a,b} | | | | | |------------------|-----------------------|------------------------------|-----------------------|------------------------------|-------------------|---------------------|---|--| | Solid
hydrate | Solid
anhydrous | Solution
H ₂ O | Solid
hydrate | Solution
H ₂ O | Polari-
sation | - Calc ^c | Assignment and description ^d (PED,%) | Predicted for species E | | 3460s,br | | | | 3405s,br | | | H ₂ O | | | 3240s,br | 3205vs | 3210s,br | 3225m,br,sh | 3255s,br | | {3185
{3185 | ν ₁ α ₁ , ν _{αε} ΝΗ ₂ (99)
ν ₃ 4α ₂ , ν _{αε} ΝΗ ₂ (99) | | | 3170vs,br | 3170vs,sh | 3160s,sh | 3160m,br | | | 3144
3142 | ν ₂ α ₁ , ν ₂ NH ₂ (99)
ν ₃₅ α ₂ , ν ₂ NH ₂ (99) | ν ₆₆ -ν ₆₉ , ν _{NH2} | | | | 3120s,sh | 3120m,sh | | | | | | | 3070vs,br | | | 3105m,br | | | | | | | | | | 2955vs | 2956vs | 0.35 | 2958 | V ₃ a ₁ , √CH(96) | } | | 2950s,sh | 2960s | 2951s | | | | 2948 | V _{36^a2} , VCH(98) | | | 2935vs | 2935s,sh | 2936m,sh | 2934s '' | 2935s,sh | D? | 2932 | ν ₄ a ₁ , νch(98) | | | 2922s,sh | | | 2920w,sh | | | 2925
2923 | ν ₃₇ α ₂ , ν _{CH} (99)
ν ₃₈ α ₂ , ν _{CH} (100) | 1 | | 2908m,sh | 2905s,sh | 2912w,sh | 2907s | 2915s | 0.3 | 2923 | V ₅ a ₁ , √cH(99) | У ₇₀ -У ₇₉ , УСН | | | | | 2897w,sh | | | | | | | | | | 2872s | 2876s | 0.15 | 2870
2868 | У ₆ а ₁ , УСН(99)
У ₇ а ₁ , УСН(99) | | | 2868m,sh | 2865s | 2872m | | | | {2868
2867 | У ₃₉ а2, УСН (99)
У ₄₀ а2, УСН (99) | | | 2858s | | 2862w,sh | 2862m,sh | | | | 40-27 | , | | 1625s,sh | | | 1629w,sh | 1630s,br | | | н ₂ о | | | • | 1600s | 1608w,sh | 1608m,br | | | 1605
1600 | ν ₈ α ₁ , δημ ₂ (95)
ν ₄₁ α ₂ , δημ ₂ (96) | } v80, v81, SNH2 | | 1570-1602vs | | 1591m,br | 1581w,sh | | | (1000 | H ₂ O | , | | 1473w,sh | 1470m | 1473w.sh | 1477w,sh | 1474vw,sh | D? | | 2- | 1479, ¥ ₈₂ , ₫ CH ₂ (97) | | 1464s | 1465s | 1467m | 1466m | 1467w,sh | D? | {1467
 1467 | V ₉ a ₁ , δCH ₂ (100)
V ₄₂ a ₂ , δCH ₂ (100) | 1467, V ₈₃ , JCH ₂ (99) | | | | | | | | (1467 | ν ₄₂ α ₂ , σCH ₂ (100) | 83,2 | | 1456s,sh | 1449m | | | | | (1454 | V = . ACH. (97) | (1454 . V SCH (100) | | 1449s | 1442s | 1454s | 1451s | 14548 | D | {1454
 1453 | ν ₁₀ α ₁ , δCH ₂ (97)
ν ₄₃ α ₂ , δCH ₂ (99) | 1454, V ₈₄ , &CH ₂ (100)
1453, V ₈₅ , &CH ₂ (100) | | | | | 1402m | 1404m | 0.65 | 1409 | $V_{11}^{a_1}$, chx(58), tNH ₂ (26) |) | | L402m | 1392m | 1405m | | | | 1396 | $V_{44}a_2$, chx(70), tNH ₂ (30) | | | 1390vw | | | .1390w,sh | 1391w,sh | D | | | | | 1370m,sh | 1372w | 1373w | 1374s | 1374s | 0.5 | 1370 | $V_{12}a_1$, chx(59), tNH ₂ (24) | | | 1363m | 1357m | 1363vw | 1363w,sh | 1368w,sh | | 1351 | V ₄₅ a ₂ , chx(99) | l | | | | | 1346m | 1351m | 0.65 | 1340 | 13a1, chx(80), tNH ₂ (23) | 186-194, chx, tNH2 | | 1345m | 1349m | 1348m | | | | 1336 | 46a2, chx(69), tNH2(36) | | | L336w,sh | 1341w,sh | 1340w,sh | 1336vw,sh | 1340vw,sh | D? | 1324 | M(100) | | | 1313w | | 1317vw | 1314w
1308w | 1315vw
1305vw | D? | 1324 | V ₁₄ a ₁ , chx(100) | | | 1305w | 1304m | | 1306W | 1303VW | D. | 1281 | V = chv(80) . +NH. (18) | | | 1300w | 1298w,sh | | 1283w,br,sh | 1283w,sh | | 1278 | $V_{42}^{a_2}$, chx(80), tNH ₂ (18)
$V_{15}^{a_1}$, chx(88) | J | | 1.264 ah | 1270m,sh | 1272w,sh | | 1264vs | P? | 1266 | V ₁₆ a ₁ , chx(100) | 1265, V ₉₅ , chx(100) | | 1264w,sh | 12/Om, sn | 1272W,BN | 1248vs | 12478 | D. | | 10-1, | 1260, V ₉₆ , wNH ₂ (75) | | 1253s
1234w | 1238w,sh | 1243w,sh | 1239w,sh | 1237w,sh | - | 1234 | ¥48ª2, chx(90) | 1232, V ₉₇ , chx(94) | | | 2230W BIL | | 1227w,sh | 1226w,sh | | | 48-2. | , 197, 2 | | 1220w,sh | | | / W / - 11 | | | | | | Acta Chem. Scand. A 33 (1979) No. 1 Table 2. Continued. | | Infrared ^a | | | Raman ^{a,b} | | | | a | |-------------------|-----------------------|------------------------------|------------------|------------------------------|-------------------|--------------|--|--| | Solid
hydrate | Solid
anhydrous | Solution
H ₂ O | Solid
hydrate | Solution
H ₂ O | Polari-
sation | Calc | Assignment and description ^d (PED,%) | Predicted for species E ^d | | | | | 1220s | 1220m | P? | 1218 | V ₁₇ a ₁ , wNH ₂ (57), chx(32) |) | | 1215m | 1215m | 1218m | | | | 1218 | ¥49ª2, ₩NH2(56), chx(44) | | | | | | 1189w,sh | 1185w | 0.5 | 1189 | V ₁₈ a ₁ , chx(69), ₩NH ₂ (27) | ν ₉₈ -ν ₁₀₁ , chx, wNH ₂ | | 1171vs | 1164vs | 1173vs | 1175m,br | 1175w,br | D? | 1178 | ν ₅₀ a ₂ , chx(84), wNH ₂ (13) | | | 1160m,sh | | 1157w,sh | 1152w | 1152vw | | 1162 | V ₅₁ a ₂ , chx(90), ₩NH ₂ (16) | J | | 1134w | 1134w,sh | 1135w | 1137m | 1137m | 1132w | D? | | 1148, V ₁₀₂ , VCN(25), chx(49) | | 1130w | 1129w | 1126vw | | | | | | | | | | 1110vw | 1112w,sh | | | | | | | LO97w | 1095w | 1095w | 1107m | 1097m | 0.1 | 1121 | √ 19a1, chx(67), √ CN(19) | | | 1080w | 1075w | 1082vw | 1080vw? | 1084w,sh | P? | | | | | 1062s,sh | | 1066m, sh | 1062vs | 1067vs | D? | 1066 | V ₅₂ a ₂ , chx(59), VCN(40) | | | 1057 s | 1057vs | 1061s | 1049vs | 1056vs | D | 1049 | V ₂₀ a ₁ , chx(97) | 1052, V ₁₀₃ , chx(88), VCN(14) | | | 1032vw,sh | | 1026w | 1034vw | | 1038 | V ₂₁ a ₁ , chx(90), VCN(16) | <u>}</u> | | 1017 vs | 1023vs | 1020vs | 1013vw | 1020vw | D? | 1022
1011 | V ₂₂ a ₁ , chx(51), VCN(46)
V ₅₃ a ₂ , chx(53), VCN(49) | V ₁₀₄ -V ₁₀₆ , chx, √CN | | 954m | 953m | | 955m | 956m | D | | | 970, \$\frac{1}{107}, \$\frac{1}{2}CN(54), chx(49) | | 921m | 921s | | 922vw | 922vw | | 929
922 | V ₅₄ a ₂ , chx(100)
V ₂₃ a ₁ , chx(92) | [928, V ₁₀₈ , chx(81)
[920, V ₁₀₉ , chx(92), VCN(13) | | OOw,sh | 900w | | 900w | 901w | D | | | | | 891w | 890w | | 890vw | 895vw | | 887 | V _{55*2} , chx(100) | 885, V ₁₁₀ , chx(100) | | 871m | 868s | | 871vw | 870w,sh | D? | 867 | V ₅₆ a ₂ , chx(87) | | | 851m | 850m | | 852# | 855# | 0.14 | 851 | ¥ ₂₄ a ₁ , chx(98) | ν ₁₁₁ , ν ₁₁₂ , chx | | | 829s | | | | | | | | | B13-823m | 822s | | | | | | | | | | | | 790m | 792m | P ? | 799 | V ₂₅ a ₁ , chx(67), €NH ₂ (28) | ٦ | | 792m | 791m | | | | | 786 | ¥ ₅₇ a ₂ , ♥NH ₂ (89) | ν ₁₁₃ -ν ₁₁₅ , γ _{NH2} , chx | | 769vvw | 763w,sh | | 772s | 762s | 0.1 | 760 | 1 ₂₆ a ₁ , (NH ₂ (58), chx(36) | 7 | | 748vvw | 745w | | 75 6m | 750w,sh | P? | | | | | 737 vw ,br | 730vw,sh | | 740w,sh | | | | | | | | | | | 655vw | P | | | | | 650vvw | | | 645vw,br | 640vw | | | | | | 620vw | 618w | | 614m | 6198 | 0.3 | 629
614 | V ₂₇ a ₁ , V ₂ IrN(72), €chel(38)
V ₅₈ a ₂ , chx(85) | 629, \$ 1 _{116}, \$ 1 _{as} \text{IrN(70)} | | 605vvw | 608vw | | 603w,sh | 606w, sh | D? | | | 600, V ₁₁₇ , chx(84) | | 579m,sh | 579m | | 578m | 580m | D | 583 | V ₅₉ a ₂ , V _{as} IrN(67), Schel(41) | 588, 118, chx(46), chel(23 | | 567m | 565m | | 565w | 567w,sh | D | | | | | 552vw,sh | | | 540vw | 545vvw | | 558 | V ₂₈ a ₁ , chx(53), Schel(27) | | | | 530w,sh | | 528w | 527 vw ,sh | P? | | | | | 515m,sh | | | | | | | | | | 508s | 505 s | | 514vs | 503va | 0.17 | 502 | J ₂₉ a ₁ , chx(86) | $\begin{cases} 505, \ \forall_{119}, \ \text{chx}(83) \\ 490, \ \forall_{120}, \ \text{schel}(57) \end{cases}$ | | | | | | 470vw | P | | | | | | 460vw,sh | | 460vvw | 452vw,sh | D | 453 | V ₆₀ a ₂ , chx(83) | | | 437s | 437s | | 436# | 438s | D | | | 418, V ₁₂₁ , chx(65), V _{as} IrN(27 | | 420vw | 422vw | | | 425w,sh | | | | | | | | | 398vw | | | | | | Table 2. Continued. | | Infrared ^a | | Raman ^a , b | | | | | |--|-----------------------|------------------------------|------------------------|------|---|--|--| | Solid Solid Solution
hydrate anhydrous H ₂ O | Solid
hydrate | Solution
H ₂ O | Polari-
sation | Calc | Assignment and description ^d (PED,%) | Predicted for species E | | | 375s | 375m,sh | 382w | 385vw | | 388 | ν ₆₁ a ₂ , chx(58), échel(17) | 385, V ₁₂₂ , chx(38), schel(38) | | 362s | 366s | 360w | 365vw | | 358 | V ₃₀ a ₁ , chx(88) | 357, √ ₁₂₃ , chx(91) | | | 360s,sh | | | | | | | | 337 w ,sh | 339w | 335w,br | 340vw | | | | | | 303s | 300s | 313w | 312w | D | | | 316, ¥ ₁₂₄ , Schel(43), chx(25) | | 291s | 292s | | 290vw | D | 285 | V ₆₂ a ₂ , Schel(54), chx(30) | | | 264m | 258m,sh | 260vw | 266vw | D? | 268 | V ₃₁ a ₁ , €chel(96) | 270, \$25, \$chel(35), chx(30) | | 241m | 241m,sh | | 240vvw | D? | 233 | √ ₆₃ a ₂ , &chel(35), chx(32) | | | 230m | 232m | 233w,sh | 230w | D | | | 224, V ₁₂₆ , Schel(45), chx(32) | | | 216vw,sh | | 211w | D? | | | | | | 200vw,sh | 198m | 198m | 0.15 | 199 | V ₃₂ a ₁ , Schel(56), V _s IrN(17) | 195, 127, 1as IrN(38) | | 173s | | | 175vw | | | | | | 158m,sh | | 156vw | 162vw | | | | 165, V ₁₂₈ , Schel(42), chx(41) | | 132s | | 132vw | 130vw | | 130 | V ₆₄ a ₂ , Schel(77) | | | 118m,sh | | | 118vw | | | • | | | 97w,sh | | | | | 95 | V ₃₃ a ₁ , \$chel(45), chx(35) | | | 80w,sh | | | | | | - | 84, V ₁₂₉ , Schel(64) | | | | | | | 45 | ¥ ₆₅ a ₂ , \$chel(92) | 37, V ₁₃₀ , Schel(50), TirN(39) | a The following abbreviations have been used: s, strong; m, medium; w, weak; br, broad; sh, shoulder. Weak bands in the region between 1600 and 4000 cm⁻¹ have been omitted. fundamentals of species A_1 and A_2 together with the calculated values. In the last column of Table 2, the main features of the fundamentals predicted for species E are summarized. Quite similar data are given for $N-d_{1,2}-\Lambda$ -chxn₃IrCl₃ in Table 3. The spectra of Λ -chxn₃IrCl₃ exhibit two strong and broad bands at 3205-3255 cm⁻¹ and 3160-3170 cm⁻¹ due to the antisymmetric and symmetric NH₂ stretching modes, respectively. The corresponding ND₂ stretching modes are observed in the region 2200-2400 cm⁻¹. As anticipated, the appearance of the CH stretching region between 2850 and 3000 cm⁻¹ is almost identical in the spectra of the parent (Table 2) and N-deuterated (Table 3) molecules. The four strong, polarised bands observed in the Raman spectra near 2955, 2935, 2915 and 2875 cm⁻¹ supposedly originate from the fundamentals $v_3 - v_7(a_1)$ with overlap between v_6 and v_7 . Corresponding bands in the spectrum of cyclohexane ¹⁹ are found in the range 2936-2853 cm⁻¹. Our NCA reveals that v_3 near 2955 cm⁻¹ is due to CH stretching of the >CH-NH₂ groups, while the remaining fundamentals in the range 2935-2875 cm⁻¹ correspond to stretching of the >CH₂ groups. The NH₂ scissors are all assigned to the band near 1600 cm^{-1} , partly obscured by bands due to water occurring in the region $1570-1630 \text{ cm}^{-1}$. Complete deuteration shifts this mode to ca. 1210 cm^{-1} which is close to the strong broad D_2O band at 1200 cm^{-1} . The NH₂ twisting and wagging modes are assigned to bands in the $1340-1410 \text{ cm}^{-1}$ and $1150-1260 \text{ cm}^{-1}$ regions, respectively. The corresponding ND₂ modes are coupled extensively with each other and with vibrations of chxn, and occur in the region $850-1160 \text{ cm}^{-1}$. The NH₂ and ND₂ rocking modes are found at 760-800 and $590-635 \text{ cm}^{-1}$, respectively. b The depolarisation ratios are given in cases where they can be accurately determined (ϕ = 0.75 corresponds to a fully depolarised band). In other cases the following abbreviations have been used: D = depolarised; P, polarised. $^{^{\}rm c}$ Iteration based upon species ${\rm A_1}$ and ${\rm A_2}$ of ${\rm A-chxn_3IrCl_3}$ and ${\rm N-d_{12}-A-chxn_3IrCl_3}$. d Abbreviations: V = stretching; δ = deformation; ρ = rocking; t = twisting; T = torsion; chel = vibrations of the chelate ring; chx = vibrations of the cyclohexane ring including hydrogen atoms, and, as subscripts, s = symmetric, and as = antisymmetric. The potential energy distribution (PED, \underline{x}_{1k} = $100\underline{F}_{11}\underline{L}_{1k}^2/\underline{A}_{2k}$) is stated only for significant contributions. Table 3. Observed and calculated (calc) vibrational frequencies (cm $^{-1}$) of the N-perdeuterio- $\Delta(\delta\delta\delta)$ -tris(1,2-cyclohexanediamine)iridium(III) cation with tentative assignments of the spectra and description of the fundamentals. | | Infrared ^a | | | Raman ^{a,b} | | ^ | | _ ,, , , , , , , , , , , , | |-------------------|-----------------------|-------------------|------------------|---------------------------|-------------------|------------------------------|--|--| | Solid
hydrate | Solid
anhydrous | Solution D20 | Solid
hydrate | Solution D ₂ O | Polari-
sation | - Calc ^c | Assignment and description ^d (PED,%) | Predicted for species Ed | | | | | 2957vs | 2956vs | 0.25 | 2958 | V ₁ a ₁ , VCH(96) |) | | 954s,sh | 2958m,sh | 2950s | | | | 2948 | V34ª2, VCH(98) | | | 2939s | 2939s,sh | 2940s,sh | 2940vs | 2938m | D? | 2932 | √ 2 ^a 1, √ CH(98) | | | 292 4s ,sh | 2924s | | | | | 2925
2923 | V ₃₅ a ₂ , УСН(99)
V ₃₆ a ₂ , УСН(100) | | | 2908m,sh | 2908m,sh | 2912m,sh | 2908s | 2914s | 0.2 | 2923 | V ₃ a ₁ , VCH(99) | ν ₆₆ -ν ₇₅ , ν _{CH} | | | | | 2872vs | 2873vs | 0.1 | {2870
2868 | V ₄ a ₁ , VCH(99)
V ₅ a ₁ , VCH(99) | | | 2863s | 2860s | 2872m | | | | 2868
2867 | У ₃₇ а2, УСН(99)
У ₃₈ а2, УСН(99) | | | 2405s | | | | | | (2867 | V38a2, VCH(99) | 7 | | | 2220- | | 2260 | | | 2404
2403 | V ₆ a ₁ , V _{as} ND ₂ (97)
V ₃₉ a ₂ , V _{as} ND ₂ (98) | 1 | | 2364s,br | 2378s | | 2368m | | | | 3, 2 40 1 | | | 2330w,sh | 2330s,sh | | | | | (2222 | V - 4 ND (07) | Y ₇₆ - V ₇₉ , YND ₂ | | 2273s | 2280s,sh | | 2286m | | | 2311
2307 | V ₇₀₁ , V _{ND2} (97)
V ₄₀ , V _{ND2} (97) | j | | | 2240vs | | | | | | | | | 1475w,sh | 1468m, sh | | 1475w,sh | | _ | | M. C | 1479, 5 80, 6 CH ₂ (98) | | | 1463s | 1462m,sh | 1466m, sh | 1467w | ₽ | 1467 | ν _{8^a1} , δcH ₂ (100)
ν ₄₁ a ₂ , δcH ₂ (100) | | | 465m,sh | | | | | | | | ν ₈₁ -ν ₈₃ , \$cH ₂ (100) | | 1452s | 1446m | 1453s | 1450s | 1452vs | D7 | 11453 | ₩ ₂ a ₁ , &CH ₂ (99)
₩ ₄₂ a ₂ , &CH ₂ (100) | J | | 1431m,sh | 1438s | 1436m,sh | | | | | | | | 1420w,sh | 1420w,sh | 1419w,sh
1385m | 1419vw
1379s | 1386s | 0.7 | 1204 | ul | ` | | 1386m
1370w,sh | 1475m | 1362w | 1368m,sh | 1368m | D. 7 | 1384 | V ₁₀ a ₁ , chx(99)
V ₄₃ a ₂ , chx(100) | | | - | | | | | | (1353 | V ₁₁ a ₁ , chx(100) | | | 1347w | 1345w | 1349w | 1343w | 1348w | 0.7 | 1349 | √44a2, chx(100) | ν ₈₄ -ν ₉₀ , chx | | 1325w | 1327w | 1327w | 1325w | 1328w | 0.3 | 1325
[1299 | V ₁₂ a ₁ , chx(100) | | | L305w | 1302m | 1305w | 1306w | 1306w | D | 1293 | ν ₄₅ a ₂ , chx(100)
ν ₁₃ a ₁ , chx(96) | | | 1269w | 1275w | 1265w | 1267w,sh | 1268w,sh | | 1266 | V ₁₄ a ₁ , chx(100) | J | | 1251vw | 1248w | | 1248s | 1253s | D | | | 1264, V ₉₁ , chx(100) | | 1225w | 1226w | | 1228s | 1230s | D | 1235 | V ₄₆ a ₂ , chx(99) |) | | 1209 vw | 1202w | | 1206vw | 1210m,sh | | 1215
1208
1207
1204 | V_{15a_1} , δND_2 (76)
V_{47a_2} , $ch\bar{x}$ (73), δND_2 (22)
V_{16a_1} , $ch\bar{x}$ (88)
V_{48a_2} , δND_2 (61), $ch\bar{x}$ (30) | | | | | 1200s,br | | 1200s,br | P | | D ₂ O | V92-V98, chx, SND2 | | | | | 1190w | 1190w | | | | | | L178m | 1185m,sh | | 1183w | 1185w | | | | | | 1171m | 1177m | 1167w,sh | | | | 1166 | V ₄₉ a ₂ , chx(100) | 1 | | 1155m | 1152m | 1150w | 1158s | 1159vs | 0.5 | 1147 | $v_{17}^{a_1}$, chx(65), tND ₂ (14) | J | | 1125w,sh | 1124w | | | | | | | | | 1120w | 1116w | 1129vw | 1133vw | 1133vw | | 1005 | al | , | | 1100w | 1098w | 1102w | 1099w,br | 1102m | 0.5 | 1095 | 1 ₁₈ a ₁ , chx(89) | L., ., ., ., ., ., ., ., ., ., ., ., ., . | | 1064m | 1061m | 1065w | 1068s | 1070s | D | 1066 | V ₅₀ a ₂ , chx(65), VCN(34) | ν ₉₉ -ν ₁₀₁ , chx, νcn, ω, | | 1052m | 1047m | 1055w | 1054s,sh | 1057s,sh | D | 1050 | $y_{19}^{a_1}$, $y_{CN}(69)$, $w_{ND_2}(30)$ | J | Table 3. Continued. | Infra | Infrared ^a | rared ^a | | Raman ^a , b | | | | d | |------------------|-----------------------|------------------------------|------------------|------------------------------|-------------------|---------------------|---|--| | Solid
hydrate | Solid
anhydrous | Solution
D ₂ O | Solid
hydrate | Solution
D ₂ O | Polari-
sation | - Calc ^c | Assignment and description ^d (PED, %) | Predicted for species E ^d | | 1030m,sh | 1033s,sh | | 1032vw | 1025vw,br | P? | 1042 | V ₂₀ a ₁ , chx(97) | 1038, V ₁₀₂ , chx(100) | | L008s | 1015vs | 1010s | 1022vw | | | 1022 | V ₅₁ a ₂ , VCN(52), t/WND ₂ (31) | } | | | | | 999vw | | | 1000 | V ₂₁ a ₁ , chx(90), tND ₂ (22) | | | 980m | 972m | | 980vvw | | | 983 | √ ₅₂ a ₂ , tND ₂ (52), chx(32) | | | 945m,sh | 944m,sh | | 945vw | 950w | 0.7 | 945 | ¥ ₅₃ a ₂ , ₩ND ₂ (54) | ν ₁₀₃ -ν ₁₁₀ , chx, νcn, w/tnD ₂ | | 34s | 932s | | 928m | 928m | 0.7 | 925 | V ₂₂ a ₁ , wND ₂ (37), chx(35) | | | 913m | 9228 | | 914vw,sh | 914w | 0.7 | 917 | V ₅₄ a ₂ , chx(88) | | | | 910m,sh | | | | | | | | | 378w | 876m | | 889w | 880w | D? | 878 | V ₅₅ a ₂ , chx(94) | J. | | 360m | 860w,sh | | 856m,sh | 862vw | D? | [859
[856 | V ₂₃ a ₁ , chx(72), tND ₂ (25)
V ₅₆ a ₂ , chx(76) | 851, V ₁₁₁ , chx(81) | | | 852w | | | | | | | | | 146w | 844m | | 8488 | 848vs | 0.12 | 841 | V ₂₄ a ₁ , chx(90) | 846, V ₁₁₂ , chx(80) | | 324m | 827w | | | 823vw | D? | | | | | | 774w,sh | | | | | | | | | 60m | 765m | | 767s | 765vs | 0.2 | 768 | V ₂₅ a ₁ , chx(78), PND ₂ (13) | 764, V ₁₁₃ , chx(79), PND ₂ (13) | | | 756w,sh | | | 755m,sh | D | | | | | | 720m,sh | | 720vw | 720vw | | | | | | 09w | 712m | | | | | | | | | 80w | 682m | | 677vw,br | 679vw | | | | | | 68vw,sh | 650vw | | | 667vw | D? | | | | | | | | | 642vw,sh | P | | | caa N | | | | | 635w,br | 628w | | | | 633, V ₁₁₄ , QND ₂ (72) | | 12vw | 613w | | | 620w | | 624 | V ₅₇ a ₂ , PND ₂ (60) | | | | | | 600vw,sh | 606w | P | 611 | W ₂₆ a ₁ , PND ₂ (73) | from 11 - 200 (74) | | | 593vw,sh | | 590w,sh | 590w,sh | | 599 | 58a2, chx(68), PND2(22) | (595, \$\varphi_{115}\$, \$\varphi_{\text{ND}_2}(74) \\ \varphi_{116}\$, \$\varphi_{\text{ND}_2}(98)\$ | | 73w,sh | 575w,sh | | 577m | 57 4s | 0.15 | 557 | V ₂₇ a ₁ , V _s IrN(54), 6chel(47) | | | 552m | 555m | | 552w | 552w | D | | | 557, V ₁₁₇ , V _{as} IrN(34), 6chel(4 | | | 534w,sh | | | | | | | | | 28m | 528m | | 523w | 530vw | D | 527 | V _{59^a2} , V _{as} IrN(49), 6chel(44) | 527, U ₁₁₈ , chx(34), (ND ₂ (22) | | 00vw | 504w | | | 499w,sh | | 518 | V ₂₈ a ₁ , chx(40), PND ₂ (15) | | | 83m,sh | 487m | | 481s | 480vs | 0.13 | 495 | V ₂₉ a ₁ , chx(77), V _s IrN(11) | 496, V ₁₁₉ , chx(71), V _{as} IrN(16) | | 168m | 4748 | | | 470m,sh | D | | | 475, ¥ ₁₂₀ , ∳chel(53), chx(45) | | 57w,sh | | | | | | | | | | 51vw,sh | | | 455w | 445w | D | | | | | 29s | 4328 | | 427s | 426s | D | 437 | $V_{60^{\underline{a}_2}}$, chx(72), $V_{\underline{a}\underline{s}}$ IrN(20) | 393, V ₁₂₁ , chx(53), V _{as} IrN(30) | | 22m,sh | 422m,sh | | | | | | | | | 12w,sh | | | 408vw | 405vw | D? | | | | | 346m,sh | 350m,sh | | 357vw | 365vw | | { 363
353 | y ₆₁ a ₂ , chx(73)
y ₃₀ a ₁ , chx(96) | 354, V ₁₂₂ , chx(46), V _{as} IrN(17) | | 38m | 341m | | 335vw | 335vw | | 4 | 30-1, | 351, V ₁₂₃ , chx(94) | | | 336m, sh | | | | | | | | | 92s | | | | | | | | | | 84s | 285s | | 283vw | | | | | 288, V ₁₂₄ , Schel(44) | | | | | | | | 257 | V ₆₂ a ₂ , dchel(64) | 260, \$\varphi_{125}\$, \$\delta_{\text{chel}}(33)\$, \$\text{chx}(27\$ | | 242m | 250m | | | | | | .02-2, | 125, | Table 3. Continued. | Infrared ^a | | Raman ^a , b | | | • | a | A | | |-----------------------|--------------------|------------------------------|------------------|------------------------------|-------------------|-----|---|---| | Solid
hydrate | Solid
anhydrous | Solution
D ₂ O | Solid
hydrate | Solution
D ₂ O | Polari-
sation | | Assignment and description ^d (PED,%) | Predicted for species E ^d | | | | | 239₩ | 239w | | 232 | V ₃₁ a ₁ , \$chel(78) | | | 237m | | | | | | 228 | √ ₆₃ a ₂ , chx(39), å chel(26) | | | | | | 220vw | 219vw | D? | | | 206, V ₁₂₆ , Schel (46), V _{as} IrN(28) | | | | | 193w | 196m | 0.17 | 194 | ν ₃₂ a ₁ , &chel (71) | 187, V ₁₂₇ , Schel(39), V _{as} IrN(20) | | 171s | | | | | | | | | | 156m | | | | 160w,br | D | | | 161, V ₁₂₈ , chel(43), chx(41) | | 134m,sh | | | | 128vw | | 126 | V ₆₄ a ₂ , chel(82) | | | 116s | | | | 116vw | | | | | | 96m, sh | | | | | | 94 | V ₃₃ a ₁ , 6chel(47), chx(46) | | | 77 w, s h | | | | | | | | 83, ¥ ₁₂₉ , Schel(67), chx(26) | | | | | | | | 45 | V ₆₅ a ₂ , \$chel (93) | 36, V ₁₃₀ , Schel (49), TIRN(39) | a,b,c,d see footnotes to Table 2. Between 810 and 830 cm⁻¹ in the spectrum of Λ-chxn₃Ir(III) and between 680 and 720 cm⁻¹ in the spectrum of $N-d_{1,2}-\Lambda$ -chxn₃Ir(III), 2-3 rather strong bands are observed in the IR spectra without, or with very weak counterparts in the Raman spectra. These bands are very sensitive to the state of hydration of the complex compound. The NCA predicts no bands in this region, and we cannot at present give any explanation of their origin. Provided the strong, polarized Raman line at 762 cm⁻¹ in the spectrum of Λ -chxn₃Ir(III) has been correctly assigned, it appears improbable that they are due to rocking modes of the amino groups. If these bands should be dependent on the anion, they might arise from N-(H)-Cl stretching (cf. the ethylenediammonium halides ²²). The vibrations of the cyclohexane ring (chxn) are difficult to describe in simple terms, but the gross features are quite similar to those for cyclohexane. According to the NCA the CCH deformation vibrations of the >CH-CH< group give rise to the bands between 1350 and 1410 cm⁻¹. The CN stretching modes should contribute heavily to the bands found in the 1020-1070 cm⁻¹ range in agreement with the corresponding bands in Λ -en₃Rh(III), calculated to occur near 1030 and 1060 cm⁻¹. In the region below 700 cm⁻¹, the three strong, polarized Raman lines at 619, 503, and 198 cm⁻¹ in the spectrum of Λ -chxn₃IrCl₃ must be assigned to fundamentals of species A_1 . In the spectrum of N- d_{12} - Λ -chxn₃IrCl₃ they occur at 574, 480 and 196 cm⁻¹, respectively. However, according to the NCA, the deuteration shift of the band mainly involving symmetric Ir-N stretching should be almost 75 cm⁻¹ while the highest shift observed is 619-574=45 cm⁻¹. All attempts to obtain agreement between the observed and calculated shifts, e.g. by introducing different assignments and various interaction force constants, were unsuccessful. Although the spectra of 1,2-ethanediamine complexes of Ir(III) and Rh(III) are generally very similar 23 the symmetric metal-nitrogen stretching mode is expected at higher frequencies in the iridium than in the rhodium complex.24 We assigned the Raman lines at 619/574 cm⁻¹ to $v_{27}(a_1)$ since the force field indicated a substantial contribution of v_sIrN to this band. However, this assignment leads to the surprising result (Tables 2 and 3) that the strongest Raman bands at 503/480 cm⁻¹ should originate in a deformational vibration of the cyclohexane ring. This appears surprising since in cyclohexane (D_{3d}-symmetry) the ring bending modes have 25 low intensities. In the complex ion with local C_2 -symmetry of the ligands and an overall D₃-symmetry, a strong induced transition dipole moment parallel to the C_3 axis would be expected for a collective motion of the six carbon atoms of the ligands (cf. Fig. 1), thus producing a strong Raman band. On the other hand, the calculated shift on deuteration is only 7 cm⁻¹ in contrast to the experimental value of 23 cm⁻¹. Without 15N substitution, which would locate the v_sIrN vibration with certainty, 9 it is at present not possible to solve this problem unambiguously. In the case of Λ -en₃RhCl₃ the Rh – N stretching frequencies 8-10 are found in the order v_eRhN $(A_1) > v_{as}RhN$ $(E) > v_{as}RhN$ (A_2) , while the corresponding Ir-N stretching frequencies of Tables 2 and 3 follow the order $v_s Ir N(A_1)$ at 619 cm⁻¹, $v_{as}IrN(E)$ also at 619 cm⁻¹, and $v_{as}IrN(A_2)$ at 580 cm⁻¹. From Table 2 it can be seen, that the band near 580 cm⁻¹ is strong both in IR and in Raman and should rather be assigned as $v_{as}IrN(E)$. The band at 565 cm⁻¹, strong in the IR, but weak in the Raman spectrum, might be assigned to $v_{as}IrN(A_2)$. However, if this alternative is adopted, it appears impossible to obtain a reasonable assignment of the corresponding bands in the spectra of $N-d_{1,2}-\Lambda$ chxn₃IrCl₃ compatible with the NCA. An explanation must wait for an unambiguous identification of v_eIrN as discussed above. Acknowledgements. The authors are indebted to Dr. F. Galsbøl for making available some results prior to publication and for supplying a sample of the title compound, and to Mrs. J. E. Gustavsen for recording some of the spectra. Financial support from the Danish Natural Science Research Council and the Norwegian Research Council for Science and the Humanities is acknowledged. # REFERENCES - Corey, E. J. and Bailar, J. C., Jr. J. Am. Chem. Soc. 81 (1959) 2620. - Harnung, S. E., Sørensen, B. S., Creaser, I., Maegaard, H., Pfenninger, U. and Schäffer, C. E. Inorg. Chem. 15 (1976) 2123. - 3. Woldbye, F. Rec. Chem. Prog. 24 (1963) 197. - 4. Woldbye, F. Studier over optisk aktivitet, Polyteknisk Forlag, Copenhagen 1969, p. 189. - 5. Saito, Y. Coord. Chem. Rev. 13 (1974) 305. - Meichen, S. J., Gale, G. R., Walker, E. M., Atkins, L. M. and Smith, A. B. J. Natl. Cancer Inst. 57 (1976) 841. - Kidani, Y., Inagaki, K. and Tsukagoshi, S. Gann 67 (1976) 921. - 8. Borch, G., Nielsen, P. H. and Klæboe, P. Acta Chem. Scand. A 31 (1977) 109. - Borch, G., Klæboe, P. and Nielsen, P. H. Spectrochim. Acta A 34 (1978) 87. - Borch, G., Gustavsen, J., Klæboe, P. and Nielsen, P. H. Spectrochim. Acta A 34 (1978) 93. - Marumo, F., Utsumi, Y. and Saito, Y. Acta Crystallog. B 26 (1970) 1492. - Sudmeier, J. L. and Reilly, C. N. Anal. Chem. 36 (1964) 1707. - Delépine, M. Bull. Chim. Soc. Fr. [5] 1 (1934) 1256. Andersen, P., Galsbøl, F., Harnung, S. E. and Laier, T. Acta Chem. Scand. 27 (1973) 3973. - Sidgwick, N. V. The Chemical Elements and their Compounds, Clarendon Press, Oxford 1950, Vol. I. XXIX. - Miyamae, H., Sato, S. and Saito, Y. Acta Crystallogr. B 33 (1977) 3391. - 17. Kuroda, R., Sasaki, Y. and Saito, Y. Acta Crystallogr. B 30 (1974) 2053. - Galsbøl, F. Acta Chem. Scand. A 32 (1978) 757. - Wiberg, K. B. and Shrake, A. Spectrochim. Acta A 29 (1973) 583. - Snyder, R. G. and Schachtschneider, J. H. Spectrochim. Acta 21 (1965) 169. - Schmidt, K. H. and Müller, A. Inorg. Chem. 14 (1975) 2183. - 22. Berg, R. W. and Rasmussen, K. Spectrosc. Lett. 4 (8) (1971) 285. - 23. Baranovskii, I. B. and Mazo, G. Ya. Russ. J. Inorg. Chem. 20 (1975) 244. - James, D. W. and Nolan, M. J. Inorg. Nucl. Chem. Lett. 9 (1973) 319. - Pickett, H. M. and Strauss, H. L. J. Chem. Phys. 53 (1970) 376. Received June 28, 1978.