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The transient-state kinetics of enzyme systems
far from equilibrium have been analyzed by a
theoretical treatment of the generalized King-
Altman mechanism for enzyme reactions. Con-
ditions are defined under which the kinetic
differential equations for this generalized mech-
anism can be analytically solved, and the
structure of the analytical solution is charac-
terized. The practical implications of the theore-
tical results are discussed with reference to the
planning, evaluation, and interpretation of
transient-state, kinetic experiments performed
by stopped-flow techniques.

Enzyme kinetics is the most important and
powerful technique available for the study
of enzymic reaction mechanisms. Early in-
vestigations of the kinetics of enzymically
catalyzed reactions were directed mainly to-
wards the steady-state phase of catalysis.
Steady-state kinetic data for enzyme reactions
are evaluated and interpreted in terms of ana-
lytically derived rate equations, and the corre-
sponding kinetic theory has been treated in
considerable detail.®* Methods are available
for the derivation of steady-state rate equat ons
for any enzyme reaction conforming to the
generalized mechanism defined by King and
Altman.* The general structure of such rate
equations has been characterized by Wong et al.
in their analysis of the steady-state rate behav-
iour inherent in the King-Altman mechanism,®
and generalized statistical methods for the
determination of empirical rate equations have
been described.®’

During the last 20 years, the application of
rapid-reaction techniques for examination of
the transient-state kinetics of enzyme reactions
has become widespread. Stopped-flow tech-
niques have proven to be of particular informa-
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tive value in this respect, and are now routinely
applied by enzymologists. Enzyme kinetic
data obtained by stopped-flow techniques are
only exceptionally evaluated and interpreted in
terms of analytically derived relationships,
however. The reason for this is that stopped-
flow kinetic experiments are carried out in
reaction systems far from equilibrium, and the
transient-state rate behaviour of such systems
hasnot been well-characterized from a theoretical
point of view. The mathematical analysis of
kinetic systems far from equilibrium is complex,
and an exact analytical solution of the corre-
sponding kinetic differential equations cannot
be obtained even for the simplest possible
Michaelis-Menten mechanism.®* Approximate
solutions of practical utility have been derived
for some specific enzyme mechanisms of com-
paratively low complexity,*?® but it is not
known to what extent and under which con-
ditions such solutions may be obtained in the
general case.

Since stopped-flow techniques are now ex-
tensively used in enzyme kinetic studies, a
generalized treatment of the transient-state
kinetic theory for enzyme systems far from
equilibrium seems highly desirable. The present
investigation provides such a treatment in the
form of a theoretical analysis of the transient-
state kinetic properties of the generalized King-
Altman mechanism for enzyme reactions. Con-
ditions are defined under which the pre-steady-
state time-dependence of concentration vari-
ables in this mechanism can be analytically
described, and the structure of the analytical
solution is characterized. The practical impli-
cations of the results obtained are discussed.
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RESULTS

Kinetic differential equations for the generalized
King-Altman mechanism. Let us consider an
enzyme mechanism involving n+1 enzyme-
containing species EX,, EX,,...EX,, (including
free enzyme), all of which are treated as con-
vertible into one another. Reaction steps in the
mechanism are assumed to be either mono-
molecular isomerizations of enzyme-containing
species [eqn. (1)] or bimolecular reactions

ki
EX; — EX]'

#ij=kj (1

between an enzyme-containing species and a
non-enzymic reactant R [eqn. (2)]. This mech-

kyj
EX;+R—> EXJ'
% =ky[R] (2

anism is basically identical with the one dis-
cussed by King and Altman in their generalized
discussion of steady-state rate equations for
enzyme reactions.* Following the convention
of these authors, we define kappas for the reac-
tion steps as indicated in egns. (1) and (2). To
simplify the mathematical formalism we further
deﬁne Hig= 0.

The bimolecular reaction steps will be speci-
fied in more detail. Let us assume that there
are s different kinds of non-enzymic reactants
R,, Ry, -+ Ry (substrates, products, inhibitors,
or activators). The arbitrarily chosen reactant
R;, is assumed to be involved in d; bimolecular
reaction steps; dj represents the ‘‘degree’ of
the mechanism with respect to R; in the
terminology of Wong et al.® The time depend-
ence of the concentration variable [R;] is then
given by eqn. (3), summation being performed

d[R,
L dt"] = Eq (2gp[ EX ] — 2p EX,]) N C))

over the d; combinations of subscripts p and ¢
which represent reaction steps involving asso-
ciation of R} to a species EX, with formation of
a species EX,. Equations similar to (3) are ob-
tained for all non-enzymic reactants, %.e. for
k=1, 2,...s.

The time dependence of concentrations of
enzyme-containing species in the mechanism is

governed by a set of n+ 1 differential equations
[eqn. (4)]. These differential equations exhibit

d[EX ] "
G = 2 Al EX o BX,] 4 o o X ]
d[EX,] #
dz =up[EX,] _.zo’ﬁj[EXx] T+ + #m[EX,,]
j=
d[EX,] "
T = % [EXo] + 210 [EX,] 4 o+ “] Zo"nj[EXn]

(4)
the linear dependence given in eqn. (5).

» d[EX,]
—— =0 5
igo dt ®)
Integration of eqn. (5) gives the stoichio-
metric relationship for the total concentration
(cg) of enzyme [eqn. (6)], which can be used for

3 [EX]=cx (6)

elimination of one of the concentration variables
(say [EX,]) in eqn. (4), giving a set of n linearly
independent differential equations [eqn. (7)].

d[EX,] %
L S =g = (ko + 3 ) [EX,]+
=0

+ (%91 — %02 )[EX ] + + - + (%4 — 201 ) [EX ]

d[EX,
L dt ! = %030p + (%39 — %) [EX;] —

— (%03 +_£0"sj)[EX:] Foor o (g — #0g) [EX ]
j=

(Ei EX,,
__[_dt-] = #onCg + (%15 — #)[EX, ]+

+ on = ) EX5] -+ = o+ 3 ) EX, ] (1)

All differential equations in eqn. (3), and at
least some of those in eqn. (7), are non-linear,
7.e. they include terms containing products
[R:I[EX;] of various concentration variables.
This means that there is no exact general solu-
tion to the set of differential equations govern-
ing the kinetics of the generalized enzyme
mechanism.

A solution accounting for the steady-state
rate behaviour of the system can be obtained
by introduction of the approximations d[EX;]/-
dt=0, ¢=1, 2,...n. This solution has been
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treated in detail by Wong et al.> and will not
be considered here. Solutions accounting for
the transient-state rate behaviour of the system
can be obtained by the introduction of approxi-
mations leading to linearization of the kinetie
differential equations, as will now be shown.

Linearization of the kinetic differential equa-
tions. Non-linearity resulting from the presence
of terms containing the product [R;][EX;] can
be neglected when changes of either [R;] or
[EX;] (or both) are negligibly small during the
period of time considered in the transient-state
kinetic experiments. In the kinetic systems near
equilibrium examined by relaxation techniques
(e.g. temperature-jump spectrometry), changes
A[R;] and A[EX,] of all concentration variables
can be kept small by a proper choice of perturba-
tion conditions (e.g. small jumps in tempera-
ture). Under such conditions contributions
from terms containing the product 4[R;]4[EX;]
are negligibly small, and the kinetic differential
equations can be transformed into a linear
form without imposing additional restrictions
on the system investigated. The corresponding
solution of the differential equations has been
described and discussed by Hammes et al.® and
will not be considered here.

In systems far from equilibrium, however,
several concentration variables may vary con-
siderably in magnitude before steady-state
conditions are attained. Linearization of the
differential equations then requires the introduc-
tion of restrictions ensuring that pseudo first-
order conditions prevail, 4.e. ensuring that
either [R;] or [EX;] remains essentially con-
stant in case the differential equations contain
the product of these concentration variables.
The present treatment will be confined to the
case where concentrations of the non-enzymic
reactants [R;] are kept approximately constant.
This case represents the more general one from
a theoretical point of view, and serves well to
illustrate all essential features of the transient-
state kinetic behaviour inherent in enzyme
systems operating far from equilibrium.

For this reason, we will use the approxima-
tions in eqn. (8) for linearization of the kinetic

[Re]=[Rs], (k=1,2,.. .8) (8)
differential equations, where [R;], denotes the

initial (¢=0) concentration of Rj;. Application-

of eqn. (8) over the short periods of time con-
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sidered in transient-state kinetic experiments
is justified when initial concentrations of re-
actants are such that ) :

[Relo>cg - 9

for all reactants being initially present in the
reaction solution. Where R}, stands for a product
and reactions are carried out in the initial
absence of this product, the additional assump-.
tion has to be made that the amount of product
accumulated during the short transient reaction
phase is too small to cause any kinetically
significant reversion of the step of product
formation (kappas for the bimolecular reaction
steps involving the product are assumed to
remain negligibly small).

Analytical solution for the generalized King-
Altman mechanism. When the approximations
expressed by eqn. (8) are valid, all kappas can
be regarded as constants. This means that eqn.
(7) can be solved by standard methods of
linear algebra.'* The solution is of the form
given in eqn. (10), where [EX,]; is the time-

”
[EX.,-]:[EX;]“+.ZOA,~16"'J" (¢=0,1,...n) (10)

]=

independent steady-state concentration of the
enzyme-containing species EX;. Ay and 7;
denote amplitude and rate parameters, respec-
tively, for the exponential transients governing
the kinetics of the system. When ¢=0, eqn. (10)
reduces to eqn. (11), where [EX,], stands for

"
[EX]o=[EX;]ss +j§lAij (#=0,1,..n) (1)
the initial concentration of EX;. This means
that eqn. (10) can be written alternatively as
in eqn. (12).

[EX)=[EXJ+ 3 44(7#=1) (i=0,1,.n) (12
i= .

Although concentration changes of the non-
enzymic reactants have been assumed to be
sufficiently small to justify application of eqn.
(8), they might be large enough to be experi-
mentally observed. Insertion of eqn. (10) into
eqn. (3) shows that the kinetic differential
equation for the non-enzymic reactant R; may
be written as eqn. (13), where the constants vy

d[Rs] n -
QG =k +j§le]e it

13)
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and M;; are given by eqns. (14) and (15);

V= Z,; ("qp[Exq]ss - "pq[EXp]ss) (14)

Mij= 2. (uapsi = 4pep)) (15)
summations over p and ¢ being performed as
in eqn. (3). An analytical solution for the time
dependence of [R;] can thus be obtained by
integration of eqn. (13), which yields eqgn.
"
[Ri]l=[RaJo+vst + Zanj(e"'f‘ -1 (16)
§=

(16), where amplitudes By; of the exponential
transients are given by

(17)

Since R; in eqn. (3) represents an arbitrarily
chosen non-enzymic reactant, solutions of the
general form indicated by eqns. (14)—(17) are
obtained for all non-enzymic reactants. By
definition, and in consistence with eqn. (14),
v; equals the steady-state reaction velocity v
when R; stands for a product in a catalytic
reaction mechanism. Similarly, we have vy = —v
when R; is a substrate and v =0 when R; is an
inhibitor or an activator of a catalytic reaction.
If the reaction mechanism considered does not
involve any catalytic conversion of substrate(s)
into product(s), v; equals zero independently of
the nature of the non-enzymic reactant.

Experimentally observed transients. The tran-
sient-state kinetics of enzyme systems far from
equilibrium are usually studied by observation
of an experimental parameter A4 (e.g. absorb-
ance) which is linearly related to the concentra-
tions of enzyme-containing species and non-
enzymic reactants. Such a relationship can be
expressed as in eqn. (18), where ¢; and ¢;” denote

” §
A=73 &[EX;]+ 3 e'[Ra] (18)
=0 k=1

the proportionality constants (e.g. absorption
coefficients) for the dependence of 4 on the
respective concentration variables.

Insertion of eqns. (12 and (16) into eqn. (18)
gives eqn. (19), where 4, stands for the initial

A—A°=at+_§lﬁj(e"i‘— 1) (19)
]ﬁ

value of 4, and where the constants « and f;
are given by eqns. (20) and (21).

§
a= &’ v (20)
k=1

” S
Bi=72 &idij+ 3 e'Byj (21)
i=0 k=1

Eqgns. (19)—(21) provide an analytical ex-
pression for the time-dependence of the ex-
perimentally observed variable 4 under con-
ditions where application of the approximations
in eqn. (8) is justified.

Rate parameters for the exponential transients.
Rate parameters r; for the exponential tran-
sients governing the kinetics of the generalized
enzyme mechanism represent the roots of the
nth degree secular equation corresponding to
eqn. (7). This secular equation will be written
in the form given in eqn. (22) and can, according

= Pt Pt e (= 1)y +

+(=)"pe=0 (22)

to the coefficient matrix of eqn. (7), be expressed
as in eqn. (23).

n
r— (% + Zo"xj) Hay = Hoy eeeeee *py — %01
] =

”

My — Xog '—("oa"*'.zo"xj) cee Hpg— ¥og
J=

: =0

”
Ham ™ Hon Han— Xon +eeee r— (%on+ 2 %nj)
=0 (23)

The coefficient p, in eqn. (22) is given by the
determinant [eqn. (24)] obtained by putting
r=0 in the determinant in eqn. (23).

"
— (% +,20"xj) Mgy = Koy eeee #n1— %o
J=
”
Hia— Koy — (¥oa+ 2, Hgj) oo Ky — Hog
=0
Po=
”
Ham— Xon Xop— Hop +oeee “("on"'.z "nj)
=0 (24)

Expansion of this determinant shows that p,
can be expressed as a sum of products of n
different kappas, such that all terms are positive
and no term contains two directly opposing
kappas (e.g. »;; and x;). We will use the abbre-
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viated notation in eqn. (25) to express these
characteristics of p,. Subdeterminants obtained

"
o= 21In,; (25)
by expansion of the determinant in eqn. (24)
by its diagonal elements exhibit the same basic
characteristics, which means that

n—t
=3 Mx; (t=0,1,..n—1) (26)

Eqn. (26), for t=n-—1, states that p,_, is
given by a sum of kappas. This can be readily
verified by examination of the determinant in
eqn. (23). Expansion of this determinant by
its diagonal elements shows that each term
containing " must be a product of the r of
n—1 of the diagonal elements and the constant
part of the remaining diagonal element. This
means that p,_, is given by the sum of the
constant parts of the diagonal elements, i.e. we

-1 =£Zl("oi +j§o"ij) =z__ . jzo’ﬁ‘j (27)

have eqn. (27), which shows that p, , is
actually given by the sum of all kappas in the
mechanism. The elementary relationships be-
tween roots and coefficients in eqn. (22), further,
prescribe that

2

7 2
X (28)

Ppr=
7

™M

Eqns (27)—(28) confirm and provide proof for
the supposition of Laidler et al.!* that the sum
of rate parameters r; for the exponential tran-
sients appearing in enzyme reactions equals the
sum of kappas in the reaction mechanism.
Kappa products in eqn. (26) may contain
varying numbers of the [R;]-containing kappas
defined by the mechanism. Coefficients p; in
the secular equation, therefore, will take the
form of polynomials in [R;] [eqn. (29)]. Since

dt'
P= zo%[R,,]s (t=0,1,..n—1) (29)

no kappa appears twice in any term of eqn. (26),
the degree d;’ of the polynomial will equal or
be less than the total number of [R;]-containing
kappas, which is given by the degree d;, of the
mechanism with respect to Rj. Further, it is
obvious that dy’ cannot exceed the number
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(n—t) of kappas present in each kappa product
of eqn. (26), i.e. we have eqn. (30). It follows

dy/ <min (dg, n—t) (30)

from the definition of the symbolism in eqn.
(26) that all coefficients a; in eqn. (29) are
positive, ang that no term in ay is negative or
contains two directly opposing kappas.

It can be similarly shown that coefficients a
in eqn. (29) are polynomials in concentrations
of non-enzymic reactants other than Ry (if
present). If R, (g+k) denotes such a reactant,
we thus have

dts’
W= 2, Ggsm[Rg]™ (31)
m=0
where
di’ <min (dg, n—t) (32)

Approximate solution to the secular equation.
Although eqn. (22) can be explixitely solved
for n <5, the exact solutions obtained for n> 1
contain root expressions and are inconvenient
to handle. Approximate solutions of greater
practical interest can be obtained under certain
conditions. To illustrate this, we will assume
that roots of the secular equation are real and
differ considerably in magnitude (we arbitrarily
define r,<r;<:--<r,). The approximations in
eqns. (31) and (32) are then valid according to
the elementary relationships between roots and
coefficients in eqn. (22). Eqns. (31) and (27)

"'n=Pn-1 (31)
ri= p;—;‘(j=1,2,---n—l) (32)

state that the rate parameter r, for the fastest
transient can be approximated as the sum of
all kappas in the mechanism. Egns. (32) and
(26) state that other rate parameters are given
by eqn. (33), i.e. they can be approximated as

n—ff'l+l

®y .

ry= Z B (o121 (33)
2 My

the quotient between two sums of kappa prod-
ucts (two polynomials in [Rj]), terms in the
numerator containing one more kappa than
those in the denominator.
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The approximate solution for the rate param-
eter r, of the slowest transient can be antic-
ipated to be of particular interest from a
practical point of view. This solution is given

dy’
# a[Ri ]
&_ZH’“]—SZOM[ k]

= = — (34)
N n—1 dy R
> M Zoau[Rk].
s=

ry=

by eqn. (34) and is valid as soon as Ir,<r;
(7=2,3,...n), i.e. as soon as the rate of the
slowest transient is much lower than rates of
the remaining transients. It may be observed
that the structure of eqn. (34) agrees closely
with that of the steady-state rate equation for
the generalized enzyme mechanism,® except that
coefficients in the numerator polynomial of the
steady-state rate equation in some cases may
be negative whereas all terms in eqn. (34) are
positive.
Amplitudes of the exponential transients. Eqn.
(7) can be written more concisely as in eqn.
EX;]= ”
o w3 (o= 2ol EX] -
" b
(xm'-*;_zo%“)[EX,'] (¢=1,2,...n) (35)
(35). Differentiation of eqn. (10) with respect
to time gives the identical relationship in eqn.

d[EX] 4 .
&= - er]A,-]e"’ﬁ (i=1,2,...n)

(36)

(36). Insertion of eqn. (10) on the right-hand
side of eqn. (35) and identification of coefficients
for the exponential terms (j=1,2,...n) of the
resulting expression with those in eqn. (36)
shows that

. ” ' n
}20 (2epi — %03} A pj + [ — (%0i +‘Z oxa)]A =0
pi

(¢=12,...n; j=12,...m) (37)

Since r; represents a root of eqn. (23), the n
equations corresponding to any particular value
of § in eqn. (37) are linearly dependent (the
coefficient determinant for this set of equations
equals zero). This means that any one of these
n equations, say the one obtained for ¢=1, can
be considered as “superfluous’. The remaining
n{n~1) equations obtained by putting ¢=
2,3,...m and j=1,2,...n in eqn. (37), together

with the = equations obtained by putting
1=1,2,.. .n in eqn. (12), constitute a set of n?
linearly independent simultaneous equations
which can be solved for the mn? “unknowns”
represented by the amplitudes 4;; (¢=1,2, . . .n;
j=12,..n).

The generalized solution for 4;; can be ex-
plicitly expressed by the use of determinants,
but this expression will not be considered here.
It may suffice to point out that an explicit
expression for each A4;; can be derived in the
general case, and that this expression shows that
4; is dependent on kappas in the mechanism,
as well as on initial conditions [the initial values
of [EX;] according to eqns. (11) and (12)]. The
dependence on kappas is partly direct, and
partly indirect through a dependence on rate
parameters r; for the transients [eqn. (37)].

Limiting amounts of mnon-enzymic reactants.
Up to this point we have considered only the
case where linearization of the kinetic differ-
ential equations is effected by introduction of
the approximations in eqn. (8), ¢.e. where
enzyme is used in limiting amounts to ensure
that pseudo first-order conditions may prevail.
In mechanisms where a non-enzymic reactant
(say R,) interacts with a single enzyme-contain-
ing species (say EX,) linearization of the
differential equations can be similarly effected
using the approximations in eqns. (38) and (39).

[EXo] = [EXo]o (38)

[Re]=[Relo (k=2,3,. . .s) (39)

Application of eqns. (38)—(39) requires that
R, is used in limiting amounts, i.e. that other
non-enzymic reactants and enzymes are present
in large excess to R;. Depending on the detailed
nature of the reaction mechanism investigated,
some additional restrictions may have to be
imposed on the reaction system. For example,
certain non-enzymic reactants may have to
be used in saturating amounts to justify the
application of eqn. (38).1%

Solutions of the linear differential equations
obtained using eqns. (38) and (39) are strue-
turally analogous to those derived using eqn.
(8) and will not be explicitly considered. It
may suffice to point out that non-cycling con-
ditions are obtained when a non-enzymic
reactant is used in limiting amounts. This
means that the analytical relationships derived
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in the latter case usually take a less complex
form than those obtained for cycling systems.
Non-general analytical solutions. Linearization
of the kinetic differential equations is not neces-
sarily required to obtain analytical solutions
describing the transient-state kinetics of en-
zymic reaction systems. Other restrictions may
be introduced to obtain solutions of an entirely
different structure (solutions which do not
involve exponential transients) in certain sys-
tems of low complexity. For example, analytical
relationships for the binding of a single ligand
R to a single enzymic site have been derived
with the restrictive assumption that cp=cg.'®
Such specific analytical solutions are of little
general interest and will not be considered
here. '

DISCUSSION

Almost all enzymic reaction mechanisms
discussed in the literature represent special
cages of the generalized King-Altman mech-
anism, as defined in the present investiga-
tion. The present results establish that an
analytical description of the transient-state
kinetics inherent in this generalized enzyme
mechanism is possible as soon as the kinetic
differential equations for the mechanism become
approximately linear. In reaction systems far
from equilibrium, linearization of the differen-
tial equations requires a proper choice of the
initial concentrations of reactants. Either the
enzyme Or & non-enzymic reactant must be
used in limiting amounts, small enough to
ensure that pseudo first-order conditions pre-
vail. Since the corresponding analytical solu-
tions of the kinetic differential equations are
structurally analogous, the present discussion
will be confined to the more general case where
enzyme concentration is limiting. It will,
furthermore, be assumed that the enzymic
reaction is monitored by stopped-flow spectro-
photometry; extension of the discussion to
other observation techniques is straight-for-
ward.

The present investigation shows that the
kinetic differential equations for the generalized
enzyme mechanism can be analytically solved
by application of the approximations expressed
in eqn. (8). The validity of eqn. (8) is dependent
upon the assumption that initial concentrations
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of non-enzymic reactants added to the reaction
solution greatly exceed the total concentration
of enzyme. If the reaction examined leads to
the formation of a product that is not initially
present in the reaction solution, the additional
assumption is required that accumulation of
this product may be neglected over the short
period of time considered in transient-state
kinetic experiments. These assumptions are
identical with those required to justify the
application of conventional steady-state rate
equations to enzyme kinetic data.!»* Hence it
may be concluded that the transient-state
kinetic relationships derived in the present
paper are of the same general validity and
applicability as conventional steady-state rate
equations. It should, in principle, be possible
to carry out most transient-state kinetic studies
of enzyme systems far from equilibrium under
such conditions that an analytical description
and treatment of the experimental data are
justified.

It is, therefore, of interest to examine the
structural characteristics of the analytical
solution for the generalized enzyme mechanism
considered in the present investigation. This
solution is of the form indicated in eqns. (12)
and (16), and prescribes that the time-depend-
ence of each concentration variable in an
enzyme mechanism involving n+1 enzyme-
containing species is governed by n exponential
transients with rate parameters r,,r,,. . ., which
are the same for all concentration variables.
The amplitude of a certain (the jth) transient,
however, may attain different values (4;),
=0, 1,. . .n and By, k=1,2,...s) for different
concentration variables. This means that the
extent to which a certain transient contributes
to the time-dependence of different concentra-
tion variables may vary, but the rate of the
transient will always be the same. In case the
reaction examined involves a catalytic con-
version of substrate(s) into product(s), the
transient concentration changes will be super-
imposed on the steady-state rates of substrate
consumption and product formation [eqn. (16)].
It follows from these structural properties of
the analytical solution that the absorbance of
the reaction solution must be dependent on n
exponential transients with the same rates as
those observed for the concentration variables,
transient absorbance changes being super-
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imposed on the steady-state absorbance changes
[eqn. (19)].

The latter observation is of great practical
interest, since it implies that transient-state
kinetic data for enzyme reactions can be
analytically evaluated in terms of a regression
function of the unique form indicated in eqn.
(19). Theoretically, the regression function
should include the total number (n) of ex-
ponential transients defined by the mechanism
(n+1 enzyme-containing species). The number
of experimentally detectable transients, how-
ever, may be considerably lower. Some tran-
sients may be too rapid and/or exhibit too low
amplitudes to be of kinetic significance under
the actual experimental conditions. The minimal
number of exponential transients required for
an adequate description of the experimental
data can be objectively determined by standard
statistical methods, e.g. by non-linear regression
analysis followed by analysis of variance or
statistical tests of the significance of amplitude
estimates obtained.’’* Such an analysis will
provide estimates, also, of rates (r;) and ampli-
tudes (f;) of the kinetically significant tran-
sients.

The analytical solution derived in the present
paper provides generalized relationships for the
interpretation of the transient-state kinetic
parameters 7; and f,. These relationships show
that 7, and B, are known (in principle) functions
of kappas in the reaction mechanism. Deter-
minations of »; and g; as a function of con-
centrations of non-enzymic reactants, therefore,
can be used to obtain quantitative information
about rate constants in the mechanism. Ampli-
tudes B, (in contrast to rates r,) are dependent
also on initial concentrations of the enzyme-
containing species, as well as on absorption
coefficients for both enzyme-containing species
and non-enzymic reactants [eqn. (21)].

The specific information content of the
amplitude parameters is utilized in several
enzymological applications of transient-state
kinetic techniques. For example, estimates of
amplitudes can be used for determination of the
active-site concentration of enzyme when ab-
sorption coefficients for reactants contributing
to the transients are known. Conversely, de-
terminations of amplitudes at different wave-
lengths may provide information about the
spectral properties of transiently appearing

reaction intermediates. Determination of the
sign of the amplitudes (burst or lag kinetics),
and examination of the effect of variation of
the pre-mixing conditions, can be similarly used
to obtain valuable information about the reac-
tion mechanism. A detailed treatment of these
specific applications of rapid-reaction techniques
is beyond the scope of the present investigation.
Obviously, however, the interpretation of such
experiments is simplified by the availability of
analytical expressions for the amplitude param-
eters considered. The present paper indicates
how such expressions may be derived in the
general case.

On the other hand, the large information
content of the amplitude parameters reduces
their informative value for the purpose of
determination of rate constants in the reaction
mechanism. Such interpretations of amplitude
estimates require a detailed knowledge about
absorption coefficients for all enzymic and non-
enzymic reactants in the mechanism and should
always be made with great caution. The corre-
sponding interpretation of rate parameters r;
is more straight-forward. Irrespectively of the
magnitude of absorption coefficients for re-
actants and of the enzyme concentrations, pre-
mixing conditions, and wavelength used for
observation of the transients, rate parameters
can be uniquely identified as roots of the secular
equation defined by the reaction mechanism.
The present investigation shows that an analyt-
ical expression [eqns. (22) and (29)] for the
secular equation can be obtained for any postu-
lated reaction mechanism of the King-Altman
type, and interpretation of the rate parameters
can be made in view of this expression.

If several closely overlapping transients are
observed, interpretations of the rate parameters
r; may have to be made implicitly, e.g. by
numerical solution of the secular equation. Such
a situation, however, has not been frequently
encountered in the stopped-flow kinetic studies
hitherto reported in the literature. As a rule,
single-exponential processes have been observed.
In systems where multiple transients appear.
these transients usually have been found to
be well-separated in time, at least over certain
ranges of concentrations of non-enzymic react-
ants. In the latter situations, it might be
justified to interprete the rate parameters
explicitely in terms of the approximate rela-
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tionships in eqns. (31) and (32) for roots of
the secular equation. These relationships have
a structure similar to that of conventional
steady-state rate equations and can be ana-
lytically handled in a manner familiar to all
enzymologists.

Hammes et al., in a frequently cited review on
the transient-state kinetics of enzyme reac-
tions,® expressed a very pessimistic view on the
practical utility of analytical solutions relating
to the transient state of systems far from
equilibrium. The approximate theoretical treat-
ments that can be made were claimed to involve
so many restrictions and to give so complex
relationships that detailed kinetic information
is sacrificed. This was in contrast to the more
obvious practical utility of the analytical
relationships routinely derived for and used in
relaxation kinetic studies of systems near
equilibrium.

The present investigation provides no support
for such a pessimistic view. The pseudo first-
order assumptions required to justify an
analytical treatment of the transient-state
kinetics of systems far from equilibrium cannot
be considered as unreasonably restrictive, since
they agree with those required to justify the
application of conventional steady-state rate
equations. As for the complexity of the ana-
lIytical relationships, it may be noted that any
treatment of the transient-state kinetics of
mechanisms of the King-Altman type must be
based on the differential equations for the con-
centrations of enzyme-containing species (eqn.
(35) for ¢=1,2,. . .n) and non-enzymic reactants
[eqn. (3) for k=1,2,.. .s] in the mechanism. In
systems near equilibrium, these differential
equations can be solved without imposing any
restrictions on the relative magnitudes of the
concentration variables. The more general solu-
tion thus obtained prescribes that the time-
dependence of concentration variables is gov-
erned by n+ s exponential transients, the rates
of which represent roots of the (n+ s)th degree
secular equation defined by the coefficient
matrix for the differential equations.® Under
pseudo first-order conditions, this secular equa-
tion reduces approximately to an nth degree
secular equation which is identical with the
one [e.g. eqn. (23)] defining rate parameters
for the exponential transients appearing under
the same conditions in systems far from equi-

Acta Chem. Scand. B 32 (1978) No. 6

Transient-state Enzyme Kinetics 445

librium. Consequently, the analytical relation-
ships derived for rate parameters in a system
far from equilibrium cannot possibly be more
complex (but might, due to the restrictions
introduced, be considerably less complex) than
those obtained for the near-equilibrium state
of the same system.

The same argument is valid as concerns the
complexity of amplitude parameters in the two
cases. Furthermore, amplitudes of the transients
observed in relaxation experiments are de-
pendent on certain thermodynamic properties
of the system which do not affect the amplitudes
observed in stopped-flow kinetic experiments.®
For these reasons, it may be concluded that
the analytical treatment of the transient-state
kinetics of systems far from equilibrium (when
possible) must lead to relationships that are
of much lower complexity than those which
have to be considered in relaxation studies of
the corresponding systems. The kinetic ad-
vantage of relaxation techniques resides mainly
in the better time-resolution obtained by such
techniques.

The practical utility of stopped-flow kinetic
techniques for the purpose of estimation of rate
constants in enzymic reaction mechanisms
appears well-established.’” Stopped-flow ex-
periments of this kind have often been evaluated
in terms of apparent first-order processes (7.e.
in terms of exponential transients), the rates of
which have been more or less intuitively as-
sumed to reflect the rate of some particular
reaction step in the mechanism. Such an ap-
proach does not seem appropriate in view of the
present results. Evaluation of transient-state
kinetic data in terms of exponential transients
is justified only when the kinetic differential
equations for concentration variables in the
system can be considered as linear. Under such
conditions the differential equations can be
analytically solved, and there is no need for
intuitive guesses. The informative value of
transient-state rate parameters determined by
stopped-flow techniques, furthermore, should
not be overestimated. As was pointed out by
Hammes et al.,® the interpretation of such rate
parameters may be quite complex, and this is
true also in the simplest situation where appli-
cation of the approximate relationships in eqns.
(31)— (34) is justified. The latter relationships
establish that the rate parameter r;, at best,
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can be assumed to represent a sum of kappas
in the mechanism. In general, the rate param-
eter must be expected to be given by the quo-
tient of two sums of kappa products, i.e. by
the quotient of two polynomials in concentra-
tions of the non-enzymic reactants. Any claim
that (the limiting value of) a certain transient-
state rate parameter equals the rate constant
for some particular reaction step should be
supported by evidence justifying a correspond-
ing reduction of the implicite [eqn. (22)] or
explicite [eqns. (31) and (32)] analytical ex-
pression for the rate parameter.

An alternative common approach for the
quantitative interpretation of stopped-flow
kinetic experiments has been to apply computer
techniques for numerical integration of the
differential equations governing the kinetics
of the system investigated.® This approach
certainly is justified under conditions where the
transient-state kinetics of the system cannot
be analytically treated (non-linear differential
equations) or where the validity of the approxi-
mate analytical relationships applied may be
questioned. Computer simulation of the reaction
kinetics, however, requires detailed assumptions
about the magnitude of all rate constants in
the mechanism, as well as about the magnitude
of absorption coefficients for all enzymic and
non-enzymic reactants involved. These short-
comings drastically reduce the practical utility
and reliability of simulation techniques for
the purpose of estimation of rate constants in
the mechanism. An analytical approach to such
problems is clearly preferable, and should
always be attempted. The present investigation
indicates along which lines such attempts can
be generally made in transient-state kinetic
studies of enzyme systems far from equilibrium.
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