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The Adjusted Screened Potential/Excluded Volume (ASPEYV)
Theory of Strong Electrolytes in Solution
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By analogy with tt . virial expansion of the equation
of state of real gases a Debye-Hiickel/Excluded
Volume (DHEYV) theory is proposed for electrolyte
solutions. The second virial coefficients are inter-
preted as excluded volume between anion and cation
using the principle of specific interaction of ions of
Bronsted. The calculated ionic radii for many 1—1,
2—1 and 1-2 electrolytes follow a clear-cut
pattern, but the radii are too large.

This is explained to be due to the screening effect
of counterions which lowers the interaction energy
between ions and lowers the contribution to the
term in the expression for the activity coefficients
proportional to the square root of ionic strength. A
statistical-mechanical theory of screened potential
is evaluated. The theory yields a semi-quantitative
explanation of the effect of screening.

A semi-empirical Adjusted Screened Potential/
Excluded Volume (ASPEV) theory is proposed
giving an excellent fit for the mean ionic molar
activity coefficients f, for all combinations of H,
Li, Na, K, Rb, Cs and Cl, Br, I in water at 25 °C
up to concentrations around 3—5 mol/dm?>. In the
formula there is only one adjustable parameter —
the excluded volume — from which one calculates
cationic radii well in accordance with radii derived
from ionic conductivties at infinite dilution.

The Debye and Hiickel theory of strong electrolytes
proposed in 1923' has had such far-reaching
influence on the later development of electrochem-
istry that it has to a certain degree overshadowed
the many subsequent efforts to rationalise the theory
or to extend its applicability to higher electrolyte
concentrations. The ionic strength has to stay below
0.001 mol/dm3 for the Debye-Hiickel limiting law
of electrolytes to be valid. This corresponds to such
high dilution that one should properly speak about
“slightly polluted solvents” where the activity coef-
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ficients are so close to unity that the interest in their
calculation is quite low. An exception — of course —
is the use of the D.H. theory for making extrapola-
tions to “infinite dilution”.

There has been two general lines of investigation.
Some researchers have tried to enlarge the con-
centration range by making empirical and semi-
empirical assumptions. Already the original papers
of Debye and Hiickel used the concept of distance
of closest approach of the two ions (a). Instead of the
dependence of activity coefficients on the square
root of the ionic strength [/i the dependence should

rather be on ]ﬁ/(l +b[/f) where b is proportional
to a and can be fitted individually for each salt.
The quantity b has a value around unity and many
authors put b=1 mol~ %2 dm*? (Giintelberg ap-
proximation). This approximation is useful up to
0.01 mol/dm® but it may give deviations to the
wrong side of the limiting law in exceptional cases
(e.9. ammonium halides? and tetraalkyl ammonium
iodides ). To account for the minimum and subse-
quent increase in In y, vs. lﬁ (y. being the mean
ionic molal activity coefficient) — found for most
strong electrolytes — an empirical “salting-out”
term Bm (m=molality) is also added. Even a third
term Cm? has been found necessary in some cases
and quite recently Pitzer and Mayorga® have
claimed the B-coefficient to be a quite complicated
function of ionic strength. Those authors have
furthermore added still another term proportional
to In(1+ bW). The hydration theory of Bjerrum -6
and later of Robinson and Stokes’ seems much
simpler and the latter has been widely cited, but it
is inconsistent in several respects (see Appendix II).
Somewhat more convincing are the later arguments
of Glueckauf,® Jacobsen and Skou® and Stokes and
Robinson.?
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Other researchers have concentrated more on the
fundamental weaknesses of the original D.H. theory.
The technique of Debye and Hiickel was to combine
the statistical Boltzmann-distribution with the
macroscopic Poisson eqn. from electrostatics and
to solve the linearised Poisson-Boltzmann eqn. For
the linearisation to be valid one must have that
z;FY;/RT is much less than unity (y; is the electric
potential around the j'th ion at the position of the
i’th ion with charge z;). La Mer et al.!!*!2 obtained
series expansions in zFy;/RT, and Guggen-
heim !3~!* has made computer calculations on the
non-linear Poisson-Boltzmann eqn. He concluded
that the expansions of La Mer et al. do not give
significant improvements in comparison to the
D. H. solution for aqueous solutions of uni-univalent
electrolytes and that the expansion terms are not
sufficient for higher valence types.

On a more fundamental level Onsager'® has
shown that the non-linear Poisson-Boltzmann eqn.
is inconsistent with the principles of statistical
mechanics, since the conditional probability of
finding an ion i at r=r given an ion j at r=0 is not
equal to the conditional probability of finding ion
j at r given ion i at 0 for unsymmetrical electrolytes
according to the non-linear P.B. eqn. This is due to
the mixing of microscopic and macroscopic concepts
in the hybrid P.B. eqn. Luckily, however, the
inconsistency disappears when the P.B. eqn. is
linearised. Onsager also showed that the so-called
Debye charging process yields different results from
the so-called Giintelberg charging process (see
Appendix I) when non-linearities are taken into
account — even for symmetrical electrolytes. Never-
theless, solution of the nonlinear P.B. eqn. has be-
come popular among some electrochemists and
among researchers studying macro-ions.!”

Mayer!® applied the principles of statistical
mechanics to the problem of finding the thermo-
dynamic properties of an ensemble of charged hard
spheres among solvent molecules. He succeeded in
deriving a virial expansion by the cluster integral
method and found the D.H. limiting law at high
dilution avoiding the questionable P.B. eqn. and
the problematic charging procedures. The same was
done with somewhat different methods by Kirkwood
and Poirier.'® Although the finding of the pos-
sibility of stratification of the average space charge
around each ion by those latter authors seemed
promising — being reminiscent of the space oscilla-
tions of the pair correlation functions in simple
liquids — the approximations done were too rough

for direct comparison between theory and experi-
ments. In 1968 Résibois (Ref. 20, p. 47) could state
— after an excellent survey of the results of apply-
ing the Bogolubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy of equations on the electrolyte
problem — that “unfortunately, the considerable
effort which has been put into this problem has not
resulted in much interest. No rigourous theory is
presently available beyond the limiting-law region”.

Some light has broken through the dimness in
recent years with the appearance of the hypernetted
chain theory (HNC) and the mean spherical ap-
proximation method (MSA). Friedman and co-
workers 2122 have performed the first successful
calculations for a wide range of concentrations and
salts with the HNC-eqns. However, the HNC
method invokes the solution of a transcendental
integral eqn. and is therefore not apt for rapid and
practical calculations. The MSA-model, proposed
by Lebowitz and coworkers,?3:24 seems to be con-
siderably more manageable,>® and Triolo et al.?®
have fitted osmotic coefficients of 23 uni-univalent
salts using this model. We shall see, however, that
the fit is somewhat unsatisfactory for the activity
coefficient data (see Appendix III) and the cationic
radii found are also sometimes less than the Pauling
radii and not consistent among different electrolytes
with common cations.

In the present paper I shall try to manoeuvre
safely between Scylla and Charybdis: on one hand
I'shall avoid mere curve fitting without fundamental
ideas, on the other hand the sophisticated mathe-
mathics without practical results. A simple one
parameter model is proposed — with the excluded
volume between the positive and negative ion as the
single adjustable parameter — which can explain
the activity data from 0.001 up to 3— 5 mol/dm? for
hydrogen- and alkali halides in aqueous solution.
Hopefully, the model cdn also be extended to
electrolytes of other valence types and to electrolyte
mixtures. Even if the end result appears simple and
the sum of radii seems to follow a consistent pattern
with hydration numbers of the cations in reasonable
accordance with numbers calculable from other
sources, the chain of argumentation has many links
and subtilities. Therefore, I shall start with the
description of a simple Debye-Hiickel/Excluded
Volume theory (DHEV). This model also yields a
consistent pattern of ionic radii, but the radii are
generally too large and the concentration range not
very big. Next, a modification of the D.H. theory —
the “screened potential” theory will be presented,
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and it will be explained why plots of Inf, vs. Vf for
many electrolytes above 0.001 mol/dm? yield almost
straight lines with slopes around 0.7—0.9 times the
value predicted by the D.H. limiting law. Finally,
the DHEV-theory and the screened potential theory
will be merged into a semi-empirical “Adjusted
Screened Potential/Excluded Volume” (ASPEV)
theory yielding reasonable ionic radii when tested
on uni-univalent RX-electrolytes with R=H, Li,
Na, K, Rb, Cs and X=Cl, Br, L.

DEBYE-HUCKEL/EXCLUDED VOLUME
(DHEV) THEORY

In this section I shall assume the following
formula for the molar activity coefficient in a
mixture of n different ionic species in electroneutral
solvent (0)

Infi=—Apyz? W + Z Bjc; (i=1,n) (1)
i=1 .

where z; is the number of unit charges carried by
species No. i, Ap y. is the Debye-Hiickel slope, I is
the ionic strength=(1/2)Z¢;z} and ¢; the concen-
tration of the j’th ionic species. The coefficients B;;
are just phenomenological interaction coefficients
between the ions. We notice that the usual Debye-
Hiickel expression can be Taylor-expanded in the
following way

Vi

— Apyz? & —Apyz2{)/1-bl} 0}

1+b)T

so that the effect of the denominator in the D.H.
theory can be approximated by eqn. (1) for ionic
strengths small enough. Due to the Maxwell
conditions we have

onf; dnf;, . .

Sfs L)) o
Jj i

and since

Jlnf; z}z} Apn.

+ By O]

Oc; 4 1/7

we have the requirements

for purely thermodynamic reasons.
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We now want to calculate the osmotic pressure IT
of an electrolyte solution. For the change in chemical
potential of the solvent caused by addition of
electrolyte we have (at constant T)

dﬂo = Vodp + RTdIn 4o (6)

where V is the partial molar volume of the solvent
and q, its activity. If the pressure p is equal to IT we
have duy=0, i.e.

dil _ _dina,
RT Vo

M

When we combine the Gibbs-Duhem eqn. (const.
T, V total volume, n; number of mol)

—Vdp+noduo+ Y, ndp; =0 ®)
i#0

with the requirement
V=noVo+)nV; )

and with eqn. (6) and the analogous eqns for i#0
we obtain
dlnaoz—LZcidlna,- (10)
Coizo

Inserting (10) into (7) and introducing the molar
activity coefficients f; we have

dIl 1

—_—=—— dc; + c-dlnf-} (11)
RT ¢V, {i;O i;o ' '

To integrate for the osmotic pressure one should
know ¢,V as a function of the various salt con-
centrations. In moderately dilute solutions, how-
ever, we have to a good approximation

coVo =1 (12)
We then have for the osmotic pressure

LIPS Ya+ Y jﬁc-'dlnf.' (13)
RT 1 i i

i¥0 i0 0

Since IT is of course independent of the path of
integration, we shall choose the simplest possible.
We put

(14)

¢ =l
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where the parameter ! runs from 0 to 1. For the
integrals in (13) we then obtain [using eqn. (1)]

< AYT+

1
f c ‘dinf/ = —Apn x Lcz?

%Z Bjcic; (15)
#
and for the osmotic pressure
RT_ Y ¢ onl??+ 1Y Y Bycg; (16)
it0 i£0j%0

We shall now make an analogy to the case of a
mixture of moderately dilute gases. According to
Ref. 27, eqns. (7—61) and (7—1) we have for a
mixture of gases (c,,, = Zc;, No=Avogadro number)

P ..
—== G+ CEN » inijz(lJ) (17)
RT T
with x; being the mol fraction of the i’th species and
the second virial coefficients are given by [Ref. 27,

eqn. (7.27)]

B,(ij) = —21:_[ {e~Vutr)*T _ 1Y 2dr, (18)

where U; is the pair potential between the i’th and
the j’th species which is function of the distance r;;
It can be rigorously shown 28 that it is allowable to
use exactly the same formalism for the osmotic
pressure in a moderately dilute solution as for the
pressure of a mixture of moderately dilute gases.
The pair potential has just to be interpreted as the
pair potential of average forces. The average force
between two solute molecules separated by a
distance of r; is given by the direct force between
the two solute molecules plus the average of a
fluctuating force due to the fact that two solute
molecules fixed at a distance r; perturb the spherical
symmetry of solvent molecules around each solute
species. Thus, for a solution of electroneutral
species we obtain

=Y c+No) Y cgBylij) (19)

RT iF0 i#0j#0

The virial coefficients are given by (18) with U;;
interpreted as the potentials of the average force.
In this paper we shall consider only the simplest
interaction, i.e. hard core interaction

U, = ® ry2Ri+R;

Y {m rU<R,+Rj (20)

From eqn. (18) we then get the second virial
coefficients in terms of excluded volumes

Byi) = 2R+ R @1)

If we compare (19) with (16) we see that they are
identical except for the Debye-Hiickel term. The
simplest assumption is therefore that it is possible
to superpose the D.H. osmotic pressure on the hard
core osmotic pressure. We than have
Bij = 2N, B,(ij) (22)
so that the interaction coefficients By; in (1) may be
calculated from assumptions of certain ionic radii.

Two years before the advent of the D.H. theory,
Lewis and Randall?® had introduced the concept
of ionic strength and stated the principle that “in
dilute mixed electrolyte solutions (up to I'=0.05
mol/kg solvent) the activity coefficient of a given
strong electrolyte is the same in all solutions of the
same ionic strength”. This principle was shortly after
repudiated by Brensted3° who instead advocated
his principle of specific interaction of ions: “In a
dilute salt solution of constant total concentration
ions will be uniformly influenced by ions of their own
sign”. From the context it appears that Brensted
meant that only ions of opposite signs would have a
specific interaction on the activity coefficients of
each other. If we interpret “uniformly influenced”
to be an influence through the ionic strength and a
“specific interaction” to a B;-interaction, Bronsted’s
principle combined with the present theory may be
stated as follows

7N 3.
B;= ( 3 (Ri+R))’ if z;z;<0 )

0 if zz;>0

The principle of superposition of the D.H. term and
the second virial terms supposed in the DHEV-
theory is of course far from obvious. One cross-
coupling between the ¢ term and the c? terms in
the expression for the osmotic pressure might very
well be, that excluded volumes of ions of like signs
should not be accounted for, since the ions are kept
apart by the electrostatic forces already accounted
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for in the D.H. term. We shall see that this seems to
be the case, experimentally.

We shall now concentrate on solutions of single,
binary electrolytes dissociating into v, cations and
v_ anions. The cation is given the number 1 and the
anion the number 2. We have now for the mean
ionic activity coefficient

Cs
Inf, = —Apy|z.z| l/i"'m
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following formula for the molal activity coefficient
(I'=molal ionic strength)

Apn VT L Avyy

1+b)/T

together with tables of b and B for various elec-
trolytes in water at 25 °C. Power expanding the
denominator according to eqn. (2) we obtain

- fm

A2

Iny, =—|z,z_| 25)

Iny, = —Apy|zez_| )T +

2 2

(07 42+ B 0 (8 e sl ”
v

where ¢, is the salt concentration and B;; =B,,=0 with

if Brensted’s principle of specific interaction of ions

is valid. Newman 3! (Chap. 4, Section 30) gives the  p=34{z%v, + z2v_} 27

Table 1. Calculation of DHEV-radii for various 1 -1 electrolytes.

Electrolyte Be By, R,+R, R, R, R, Hydration Hydration

kg/mol~ dm’/mol A A A (Pauling) shell volume number
dm?/mol A (A%

HCl 0.27 1.72 88 1.8

HBr 0.33 1.84 9.0 20 70(1) 0 1440 48

HI 0.36 1.90 9.1 22

LiCl -021 1.62 8.6 1.8

LiBr 0.22 1.70 8.8 2.0 6.8(1) 0.61 1320 44

Lil 0.26 1.88 9.1 22

NaCl 0.15 1.48 84 1.8

NaBr 0.17 1.52 8.4 2.0 6.5(1) 096 1150 39

Nal 0.21 1.60 8.6 22

KCl1 0.10 1.38 8.2 18 .

KBr 0.11 1.40 8.2 20 63(1) 1.33 1040 35

KI 0.15 1.48 84 22

RbCl 0.06 1.30 8.0 1.8

RbBr 0.05 1.28 8.0 20 602 148 890 30

RbI 0.04 1.26 79 22

CsCl 0.00 1.18 78 1.8

CsBr 0.00 1.18 78 20 58(2) 1.66 800 27

Csl -0.01 1.16 71 22

HNO, 0.20 1.58 8.6 7.0

LiNO;, 0.21 1.60 8.6 6.8

NaNO; 0.04 1.26 79 1.4(4) 6.5

KNO, -0.11 0.96 73 : 6.3

RbNO, -0.14 0.90 71 6.0

CsNO, —-0.15 0.88 7.0 58

4 All data for water at 25 °C from Ref. 31, Table 30-1. For all electrolytes b= 1 (kg/mol)* ~ 1 (dm3/mol)*. Numbers
in parenthesis indicate uncertainty on the preceding cipher.
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Table 2. Calculation of DHEV-radii for various 2—1 and 1—2 electrolytes.

Electrolyte  b° 28 B,, R,+R, R, R, R,
(kg/mol)? kg/mol dm?®/mol A A A g’auling)
~(dm3/mol)  ~dm3/mol

MgCl, 1.59 0.36 8.79 152 18

MgBr, 162 0.50 9.09 153 20 1331 065

CaCl, 1.54 029 8.45 150 18

CaBr, 162 037 8.96 15.3 20 1331) 099

SrCl, 1.56 022 8.49 150 18

StBr, 162 030 8.89 152 20 132113

BaCl, 1.56 0.11 8.38 149 18

Babr, 156 024 851 150 20 130) - 135

MgNO,), 153 0.36 847 150 133

CaNO,), 139 0.09 7.46 144 13@) 133

StNO,), 139 ~007 730 142 132

Li,SO, 1.41 ~0.11 736 143 63

Na,SO, 127 ~028 6.45 137 65

K,$0, 107 —015 552 130 757) 63

Rb,SO, 1.33 —025 6.80 139 60

Cs,S0, 133 ~020 6.85 140 538

< All data for water at 25 °C from Ref. 31, Table 30-2.

For sufficiently dilute solutions we can neglect the
difference between the molality and salt concen-
tration except that we have to use Apy =1.1779
dm?¥?mol~ "2 instead of Ap . = 1.1762kg!/>mol~ /2
(Ref. 31, Table 28 — 1). We have then by comparison
with (23) and (24)

Blzz2ﬁ+l—2)uv++v“
'

(28)

AD.H.|Z+Z—|

From the figures in Newman’s tables (Ref. 31,
Table 30—1 and Table 30—2) we calculate by
means of (28) the excluded volume B, , for various
uni-univalent electrolytes (Table 1) and for various
2—1 and 1--2 electrolytes (Table 2). Furthermore,
we get the sum of radii from (23). Comparing the
sum of radii for alkali halides with the same cation,
we observe that the differences correspond very well
to the differences in the crystallographic radii
between the halogenide ions. Therefore, the anions
are assumed unhydrated and the radii of the cations
can be estimated. The hydration numbers of the
cations are calculated from the volume in the
spherical shell between the calculated radius and the

Pauling radius, assuming that each water molecule
occupies 30.0 A3 as in pure water at 25 °C. This is
just a rough approximation, since many electrolytes
are known to have negative partial molar volumes
in water; see Bernal and Fowler (Ref. 32, Table V).
However, the approximation is good enough to
demonstrate that the hydration numbers calculated
by the DMEV-theory are much too large to have
any realistic significance.

Apart from that, the pattern shown in Table 1
and Table 2 is fairly consistent. The radii of the series
H*, Li*, Na*, K*, Rb* and Cs* as well as the
series Mg2?*, Ca’*, Sr?* and Ba?* decrease
monotonically, since the smallest ions are the most
hydrated. The earth alkali ions are more hydrated
that the alkali ions due to the double charge. The
“radius” of the NOj3 ion in alkali nitrates is 1.4+ 0.4
A and the “radius” of the SO2~ ion in alkali sulfates
is 7.5+0.7 A. Those values are remarkably constant
when one considers that attractive forces and orien-
tation dependent forces must play important roles
for those ions — making a simple excluded volume
theory quite inappropriate. The constancy of those
anionic radii should also be seen in the light of the
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wildly fluctuating values of the b- and the p-values
taken apart.

The reason for the exaggeration of the values of
the sum of radii is that the Debye-Hiickel slope
Ap y. grossly exaggerates the effect of ionic strength
for ionic strengths above 0.001 mol/dm? due to the
screening of ions by their counterions. In the next
section it will be explained why slopes less than
Apy (0.7 to 09 Apy) give a much better fit for
electrolytes of all valence types between ionic
strengths 0.001 and 0.05 mol/dm?, and why even
smaller slopes may be expected for larger ionic
strengths. It is then clear that the excluded volume
in (24) will be exaggerated.

THEORY OF SCREENED POTENTIAL

The point of departure in the classical theory of
Debye and Hiickel is the following pair distribution
of ion j in the field of ion i
n(r) = pipexp [ —z;Fy(r)/RT] (29)
where p; is the mean number density of the i’th ion,
¥; the electric potential due to the i’th ion in the
distance r from this ion and F is the Faraday
number. We shall require that
Fy,/RT< 1 (30)
The local charge density p,* around the i’th ion can

then be approximated by (using the condition of
electroneutrality for the mean densities)

(€20)

Combination of (31) with the Poisson eqn. of elec-
trostatics yields the linearised Poisson-Boltzmann
eqn. for the distribution of the electric potential

V2, = %Y, (32)
with the definition
21

where ¢ is the absolute permittivity of the solvent
medium. The solution to (32) for a point charge
z; is
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DH. _ ziFe™™" 34
Vi 4me Nor 34
and the charge density around ion i is to a first
approximation

sziFe_ xr

9MDH)= -
Pa( ) 4nNr

(35)

Already at ionic strengths around 0.001 mol/dm?,
however, we have a pronounced screening of the
interactions between ions due to the atmosphere
of the counterions. From (35) we get a first ap-
proximation to the charge in the ionic cloud inside
a sphere with radius R

R
aBER) = fotmrpOdr = — 25 (1-guR)} ()
o

with the definition

g(#R) = (1 +xR)e~ "R (37

To get the total “effective charge” inside the sphere
with radius R we have to add the ionic charge
z;F/Ng t0 g 0ua- We obtain
z{"(R)=g(xR)z; (38)
The basic eqn. (29) was obtained by using simple
Boltzmann statistics and noting that the interaction
energy of ion j in the field of ion i is z;Fy;/N,. A
much better approximation of the interaction
energy is, however

% OFY0)No

since z§/(r) is the part of the charge z; effectively
“seen” from the central ion i. Just imagine, that the
ionic cloud was effectively finished at a distance
smaller than r. Then, there cannot be any elec-
trostatic interaction between ion i and ion j, and
the local densities of those species are uncorrelated
with a pair distribution function n;(r)=p;p;. Replac-
ing z; with g(xr)z; in (29) and using the Debye-
Hiickel condition (30) we obtain as a second ap-
proximation for the local charge density (the
“screened potential” approximation)

2
pLSP) = ~ Tl QW) )
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¢

1.0,

0.5

Fig. 1. Finding the screened potential function by trial and error. See text.

Inserting this into the Poisson eqn. we get the
“screened potential” version of the linearised P.B.
eqn.

VA =gl (40)
Introducing the dimensionless variable
X =xr (41)

the Laplacian in spherical coordinates and the new
function

O =yFx 42)
we get the differential eqn.

d’e
dx?
This differential eqn. has been solved by computer
using a third order Runge-Kutta algorithm with a
steplength in x equal to h=0.1 and an error of
O(h*); see Ref. 33, No. 25.5.22.

Some results are shown in Fig. 1. One can choose
® and d®/dx at x=0 to be arbitrary values. We
choose ®(x=0) to be 1, since another value will
just amount to a scale factor. For the chosen value
of ®(x =0) there will only be one value of [d®/dx], -,
with a solution with the property that ®—0 when
x— oo (see Fig. 1). If the initial slope is —0.9173 the
®(x) curve finally rises and goes to co when x—0.
On the other hand, the curve with initial slope
—0.9174 cuts the x-axis around x=4170, while the

= gy “3)

curve with initial slope —09175 cuts at x=202.
The initial slope must therefore be between —0.9173
and —0.9174, but the curve with slope —0.9174
will be very close to the true curve for x less than
1000. Because of the importance of this potential
curve for the present and future studies we have
tabulated it in Table 3. We notice especially the
long “tail” of the potential curve in comparison to
the solution exp(—x) to the simple linearised P.B.

Table 3. The screened potential function ¢(x).

x ¢ x ¢

0 1.0000 22 0.2406
0.1 09131 24 0.2245
0.2 0.8353 2.6 0.2113
0.3 0.7657 28 0.2003
04 0.7035 3.0 0.1912
0.5 0.6479 35 0.1744
0.6 0.5982 40 0.1638
0.7 0.5538 50 0.1525
0.8 0.5140 6.0 0.1478
0.9 0.4784 70 . 0.1459
1.0 0.4465 8.0 0.1450
1.1 0.4179 90 0.1447
1.2 0.3922 10.0 0.1445
1.3 0.3691 200 0.1441
14 0.3483 500 0.1430
1.5 0.3296 80.0 0.1419
1.6 0.3127 100.0 0.1413
1.7 0.2975 150.0 0.1396
1.8 0.2837

19 0.2713

20 0.2600
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eqn. The ionic cloud is less concentrated in the
screened case since the interactions between ions
are weaker.

In the classical Debye-Hiickel theory the transi-
tion from potential function to activity coefficients
is made by various charging processes (Debye
charging, Giintelberg charging), but since those
procedures can be criticized from several points of
view (see Appendix I), we shall apply instead a more
satisfactory method given, eg., in the monograph
of Résibois (Ref. 20, pp. 34—40). From simple
mathematical properties of the configuration in-
tegral and the pair distribution function we obtain
for the electrostatic contribution to the Helmholtz
free energy per unit volume

5 I dr Zi U rnfrA) (44)

where A is a parameter measuring the strength of
electrostatic interaction with the Coulombic inter-
action energy AU given by

Az; z!F 45)

el _
AU " 4nN3 0€olij
with ¢, being the permittivity of vacuum. The pair
distribution function n;; in (44) is determined by the
Uﬁ}-interactions as by the short range quantum
mechanical forces between ions and between ions
and solvent. The Debye-Hiickel approximation is
now to suppose that the only contribution of short
range forces are the ion-dipole forces between ions
and solvent molecules, and to assume that those
interactions can be adequately accounted for by
substituting the permittivity of the solvent ¢ instead
of ¢ in (45). Furthermore, the Debye-Hiickel pair
distribution function is used, i.e.

FU,
n; = pipj[l - ZR—;I:{I = pipj[l -

When the interaction strength is only the fraction 4
of the full interaction, we can proceed formally by

replacing z; by ﬂzi. We then have ' = ﬂx and

Al T 2°_ﬂ"'] @

2, —Xr
Z;Z d (4 ( 4 6)
4nRTeNor

nrA) % pip f[l 4nRTeNyr

Using the electroneutrality condition for the mean
densities p; and transforming the variable dr=
47nr*dr we obtain from (44), modified (45) and (47)
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B=-3 joldAZ{zFZZL;%';l f e-W’"dr} 48)
0

Carrying out the integrations we obtain

Ael - — RT x3
Q 127N,

49)

which is exactly the result of Debye and Hiickel for
point charges.

We are now going to introduce the corrections for
screening. According to (39) and (40) the charge
distribution around the i’th ion in the SP-approxi-
mation is given by

P(SP) =

— e gl = st@C@ (50)

where @ is given in Table 3 and C; is a scaling factor
for the potential distribution. It can be found by

requiring that the total charge in the ionic cloud
counterbalances the charge on the central ion

j P4 r*dr = ——C _f gx)®(x)xdx = _aF
0 Ny
so that
C = z;F x (51)

N, o 4ne ; xg(x)P(x)dx

The potential around the i’th ion is then given by

s zif D(xr)
O T Nedmel, < r (52)
with
Ji= | xgto®xdx (53)
0

The pair distribution function is given by

(54)

nfr) = Pipl[l - ———Z‘F g(xr)l/l,-sp]

RT

or — when the Coulumbic interaction strength is
less than unity —

Azizg()/ o) F? MW%’)] 55)

fArA) = pipf 1- x
nyrd) = pip ’[ 4neNoRTJ, r

2
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The screened potential interaction energy is Carrying out the A-integration and using the
definition of x in (33) we obtain
2 F2
Uel = zizig (%r) 56
J 47IN(2)€7',~’- ( ) @ = RT ﬁ %3 (61)
Q 127Ny \J,

Introducing (55) and (56) in (44) and using the
electroneutrality condition for the mean densities  The activity coefficient of the i’th ion is given by

p; and p; we obtain
3 (A, VYT
RTInfi=|—(==% = -
jldlj' ZCicjz 0c;\ Q Jqr 81IN083/2]/

Ay _ 1 F
Q 2 47[82N0RTJ 0] 62)
(Y 2ur) () Doer)dr 57 or
Ja 2
In the last integral we change variable to p= ﬂxr. Infi=- (.1_1)’4"‘“-2" Vi ©63)
Furthermore, we use that
with the Debye-Hiickel constant

Yeiczizt = Cez?)Qez?) = 412 (58)
ij i j l/i F3

. Apn. = QN (RTN32 (64)
Then (57) can be written 81N o(RTe)

Ay _ PPFY, The only difference from the D.H. limiting law is
© = AN I Vadi (59 the factor J,/J, which has to be evaluated
numerically. The two integrals have been calculated
by computer by means of Simpson integration with

ith
it steplength h=0.1. We obtain

] 9°0)0Mp 0, = 0855500005 J, = 0.6055+0.0005

|I‘\'=

.
-08 ANAE SN

-15 =N .
D.H. |\ | BR$. ntelberg,
A $089A Y N |
.2 Stop DA ISTF< [
\~‘
-.25
0.05 0.1 015 02 V7
mol Y2gm~ /2

Fig. 2. Logarithm of molar mean ionic activity coefficient vs. square root of molar ionic strength at moderate
concentrations for various electrolytes. Water at 25 °C.

O, HCI; [0, LiBr; A, KI; @, RbC] l CsCl+CsBr; 9, Co(NH;)3*Co(CN)Z ™. (Data from Ref. 34 at
18 °C have been multlplled by (433%:./A5%. x 3%) to make them compatible.)
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We have then for the mean ionic molar activity

coefficient in the screened potential approximation

Inf, = —0708|z,z_ |Apu )1 (65)
In Fig. 2 we have plotted some experimental
results for various electrolytes against the square
root of the ionic strength. From the figure it is clear
that the D.H. limiting law is grossly in error even
at such low concentrations as 0.001 mol/dm® where
measurements start for most electrolytes. The
experimental results for the lowest concentrations
(up to ionic strenths around 0.01 mol/dm?) seem to
follow quite closely a straight line with slope —0.89
Apy, but around I=0.02 mol/dm?® the slope
—0.708 Ap y. is more appropriate. The concentra-
tion region shown in Fig. 2 is then a transition
region between the Debye-Hiickel situation and
the screened potential situation. We could repeat
the whole procedure once more and obtain a third
approximation and so on. It is clear from the formal-
ism used that for each new iteration we would find
an expression of the same form as (65), but the factor
would differ. Sketchy calculations seem to indicate
that the factor will diminish even further, but a
detailed investigation of this point as well as an
investigation of the influence of the ionic size on
the effect of screening will be left for future study.
Here we shall just anticipate that the empirical
facts show (see next paragraph) that the numerical
value of the effective slope in (65) diminishes with
increasing ionic strength, until it reaches a stationary
value which seems to be greater the greater the
excluded volume is between anion and cation.

ADJUSTED SCREENED POTENTIAL/
EXCLUDED VOLUME (ASPEV) THEORY

We have seen that the DHEV-theory gave a
quite consistent picture of excluded volumes for
many electrolytes, but the sum of radii was too
big. In the preceding paragraph we showed that
the Debye-Hiickel limiting law is exaggerating the
effect of Coulombic forces, since it doesn’t take into
account the shielding of ions by their counterions
in the expression for the interaction energy between
two ions. As a straightforward generalisation of
(24) 1 shall try to apply the following equation

Inf, = —A*x + B*x? (66)
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where B* in conformation with (23) and (24) is
given by

pr =2V g 67)
vyt+v_

and x is the square root of the ionic strength. In
accordance with the points of view in the preceding
paragraph, 4* is around 0.7|z,z_|Apy, but it
might be varying in an individual way for each
electrolyte with varying ionic strength. In the
present section we shall fit (66) to the mean ionic
activity coefficients of various hydrogen- and alkali
halides.

If (66) were a true parabola (i.e. A* and B* are
independent of x) one should have

_Aar (68a)
Ymin =5
*)2
(nfu =~ 42 (68b)
A* 1
X_4 =E;<l—%> (68C)
A* 1
x+§=ﬁ(1+—l/;> (68d)
Xo = g—: (68e)

For the definitions of x_ 5, X, 1/, and x, see Fig. 3.
The data for mean ionic activity coefficients
(molal) as a function of molality have been collected
from various sources.3*~37 Molal activity coef-

infe

0 X-1/p Xmin

84
h"':lman

X=V[

Fig. 3. Various characteristics for In f, wvs. 1/;
curves.
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Table 4. Characteristics of the In f, vs [ﬁ curves for various uni-univalent electrolytes.

Electrolyte  —(Inf )nin X_y X_09 Xmin X409 X4g Xo Ref. No.
HCl 0.270 0.150 0.60 115 1322 37

HBr 0.240 0.130 0.50 0965 1162 37

HI 0.202 0.105 042 0.820 0982 37

LiCl 0.305 0.150 0.65 1235 1452 37

LiBr 0.276 0.150 0.60 1.080 1298 35

Lil 0.214 0.125 042 0930 1100 37
NaCl 0.400 0.240 1.0 1.855 2175 3735
NaBr 0.352 0.240 0.85 1.550 1845 37

Nal 0.300 0.175 0.65 1300 - 35

KCl 0.493 0.305 13 (243)* - 37

KBr 0.452 0.270 12 220 - 37(I £0.05), 36(1 >0.1)
KI 0.415 0.245 1.0 1835 - 35
RbCl 0.533 0328 0870 13 1845 — - 37,35
RbBr 0.540 0330 0895 14 1900 - - 35

Rbl 0.528 0320 0850 1.3 1.750 - - 35
CsCl 0.627 0380 0960 145 1950 —  — 3735
CsBr .

Csl ~0.65 ~0.4 ? ? ? - - 35

2 Extrapolated value.

ficients have been transformed to molar activity
coefficients and molality to molarity by means of
the formula and tabulation for ¢/m given in Ref. 35,
Table (12-1-1A), p. 725. A smooth curve was drawn
for In f, as a function of the square root of ionic
strength and X, (I0 filnins X-1/2, X412 and xo
were found for the investigated electrolytes. The
tabulation together with the data sources is given
in Table 4. Since In f, vs. x is not precisely a
parabola one has to make some choice about the
concentration range of fitting. When (In f})nin
X_1/2, X+1;2 and X, are fixed to their experimental
values and A4* is chosen to some value, B* may
be calculated from (68b—e). The B*-values cal-
culated for the various A*-values by the four
formulae are plotted for H I in water at 25 °C in
Fig. 4. One observes that in optimum 1, the depth
of the minimum, the x-value of half-minimum to
the right of the minimum and the pseudoideal
point is reproduced by the parabola, but not the
x-value of half-minimum to the left of the minimum.
In optimum 2, the depth of the minimum and the
Xy, value fit, but not x,,,, and x,. Similar plots

BT

.6 8

. 10 1.2
A dm Y2 mo1-¥2)

Fig. 4. Finding optimal values for A* and B*. Here
HI in water at 25 °C.
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Table 5. Optimal values of A* and B*.
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Electrolyte A¥, B, B* (adjusted to regress.) B* (final adj.)
(dm?/mol)? dm?>/mol dm?/mol dm?®/mol

HCl 0.83 0.63 0.64 0.64

HBr 0.84 0.74 0.74 0.74

HI 0.82 0.84 0.94 094

LiCl 0.865 0.60 0.54 0.54
LiBr 0.87 0.68 0.62 0.62

Lil 0.78 0.71 0.78 0.78
NaCl 0.75 0.35 0.355 0.355
NaBr 0.765 0.415 0415 0415
Nal 0.795 0.52 0.52 0.52

KCl 0.705 0.25 0.25 0.27

KBr 0.715 0.28 0.29 0.29

KI 0.78 0.365 0.35 0.35
RbCl (0.76) (0.27) 0.26 0.25
RbBr (0.75) (0.26) 0.25 0.25

RbI (0.80) (0.30) 0.27 0.26
CsCl+ CsBr (0.845) (0.285) 0.23 0.16

Csl - — - 0.16

were made for most of the electrolytes given in
Table 4. In most cases the x, ;,, and the x, curves
even coincided completely.

The values of A* and B* in optimum 1 are given
in Table 5. Values for rubidium and caesium
halides have been estimated from x_g g, X4 .o and
(I £y Jnin, SINCE X4/, and x, could not be safely
extrapolated from experimental data. When two
data sources disagree about the numerical values
of f, we have proceeded with the values which
seemed to follow the excluded volume pattern most
closely. Especially some of the data given by
Latimer®” in more concentrated solutions seem to
need careful scrutiny before use, see Fig. 11 for an
example (KBr).

In Fig. 5 we have plotted the optimum values
(optimum 1) of A* found vs. the optimum values of
of B*. There seems to be a linear correlation be-
tween the two parameters. The lower the excluded
volume, the lower the optimum A*. A qualitative
explanation may be that for smaller ions, the
screening effects described in the preceding para-
graph — leading to an A* lower than A,y — are
allowed to evolve to a greater extent at increasing
ionic strength than for the larger ions where the

Acta Chem. Scand. A 32 (1978) No. 7

excluded volume forces come into action at lower
ionic strengths. The linear regression involving all

A" (opt)

0.9

07

VR T WA WY WA ST SN W S |

2 ) 8 8
8* (opt) (dm>- mot ™)

1.0

Fig. 5. Linear regression forloptimal A* on optimal
B*.



584 Torben Smith Serensen

* L 3
A mol"72dm?

< v v v T v —
N ]
1.0f -
P ]
b \ “

3 N
0.9} Q) 4
: \\ -
3 \\\ ]
0-8 L \\ -
* . () ]
A min R ol ]
- ~ -
0.7 - < >
g ~~ . GUNTELBERG ]
o.6f S~ao -
C ~< p
- ~< 9
5 N - e
0.5} -
A " " M A " 4 A L 1 1 ]

0.5 1.0

\)
Vi molZdm

3
-2

Fig. 6. The variation of A* with ionic strength. O Calculated from experimental data for KCl in water at
25 °Cwith B, =027 dm*/mol. Full line: 0.734 +(0.89 A, ;. —0.734) exp (— 18 x 0.27I).

the points in Fig. 5 (where Lil and Rb and Cs
halides have been omitted) is found to be

A%, =0.247 B%, +0.667 (69)

No systematic variation between the parameters in
optimum 2 (Fig. 4) is found. What I have done
now is simply to force the deviating points to lie
somewhere on the regression line without disturbing
the good fit of the parabola too much. In this way
I have obtained a one parameter expression for
In f, for concentrations from the minimum in Inf,
and above. The chosen B* values are listed in the
fourth column of Table 5. What remains is then the
concentration region from around 0.001 mol/dm3
to the concentrations of minimum In f,. If we
calculate A* as a function of ionic strength by
means of

—Inf, + B}, I

Vi

we observe that the variation in A* is quite well
described by the expression (see Fig. 6)

A* = (70)

A*= A:m +(0.89 Apn. _A:ﬁn)e_d (M

Expressions of the type exp(—a’ [/7) have also been
tried, but they yield a bad fit. The classical D.H.
expression taking into account ionic size in the
electrostatic contribution to Inf, would lead to
the following variation of A*:

Ap.n
A*=—"+ (72
1+b)/1 )
< (9 01)
[re——— | B A T T
HCI ]
10 -
! ~«=18B* |
L NaClI ]
L o, 4
- KCle 1
sl
L 'eRbCI {
°Cs(iCsBr
|
h— 1 P
0.5 1.0 Bg(d"'s/inol)

Fig. 7. Regression of a vs. BY,.
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When b=1 mol™* dm%? one speaks about the
Giintelberg approximation. This is indicated in
Fig. 6 by a dashed line. The Giintelberg approxi-
mation as well as the more general D.H. relation
fail to describe the asymptotic behaviour of A*
towards a minimum value A%, (=A4%,). Notice,
that the experimentally determined slope of
0.89A4p 4. for small values of ]/7 (see Fig. 2) has
been built into (71). This eqn. should therefore not
be used for exact calculations below I=0.001
mol/dm3,

Some of the a-values are plotted against B* in
Fig. 7. The regression yields a linear correlation
given by

« = 18.0B* (73)

The final result is that In f, can be calculated from
knowledge of the excluded volume only, by means

Infg —
+1.0 /Hl
+0.8 / I HBr
+0.6 /-/.~
I )
+°A = ‘—l
11/
¥1/
+0.2 /88 [
A 1A
"av
0 AWAVIR
I ALY
- A/ } /, 4
-0.2 H al ol ,,/' ‘
[ 1
0.5 1.0 15 vy
moly’dm_%

Fig. 8. @, HCI (Ref. 37); W, HBr (Ref. 37); A, HI
(Ref. 37).

Dashed line: Calculation according to MSA-
theory for HCI, see Appendix III. Text common to
Figs. 8 — 12: Logarithm of molar mean ionic activity
coefficients vs. square root of molar ionic strength
in water at 25 °C. Full lines calculated from eqgns.
(69) and (74).
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of the formula

Inf, =
—{A%+ (089 Apy —AX)e” B/ T+B*  (74)

[with A%, =AX, given by (69)] valid for all the
uni-univalent electrolytes investigated in this para-
graph.

The expression (74) yields very fine correspon-
dence with experimental values, see Figs. 8 — 12. The
values of B* for Rb and Cs halides were the most
uncertainly determined due to lack of data for
x4+4 and x,. For these electrolytes, (74) has simply
been taken for granted, and B* has been fitted to
give the best correspondence up to the greatest
possible ionic strengths. Small changes in B* have
also been made for some of the other electrolytes.
In that way, the values in the last column of Table 5
have appeared.

Thus, we have here a very simple one parameter
formula which can easily compete with the more
complicated two parameter formula of Robinson
and Stokes’ and with multi-parameter formulae
such as given by Pitzer et al.* Eqn. (74) is also much
simpler than the eqn. derived from the MSA-
theory (see Appendix III). Furthermore, it will be
shown in the next paragraph that the B*-values
found constitute a nice illustration of the principle
of specific interaction of ions of Brensted and yield
values of the radii of the hydrated cations in
reasonable accordance with radii estimated from
ionic conductivity data.

RADII OF HYDRATED CATIONS FROM
ASPEV-THEORY AND FROM CONDUC-
TANCE DATA

I have calculated the sum of radii (R, +R.)
from the final values of B* (Table 5, column 5)
using eqns. (67) and (23), i.e. the principle of specific
interaction of ions of Bransted is used. The results
are given in Table 6. If the anions are assumed to
be unhydrated, their radii are given by the Pauling
radii and the values of the cationic radii given in
Table 6, column 4 are found.

To have an independent check of those radii we
have also considered data for ionic conductivities
at infinite dilution (1?). The advantage of those
data are that they can be ascribed completely to one
single ion in pure solvent. The most obvious idea
is to try to apply the Stokes-Einstein formalism, i.e.
to assume the macroscopic, hydrodynamic,law of
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Fig. 9. O, LiCl (Ref. 37); (0, LiBr (Ref. 35); W, LiBr, probably erroneous data (Ref. 37); A, Lil (Ref. 37).
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Fig. 10. @, NaCl (Ref. 37); m, NaBr (Ref. 37); A, Nal (Ref. 35); €, Nal, probably erroneous data (Ref. 37).

Stokes valid for the microscopic “friction coef- |z:| F?
ficient”. As is well-known, this procedure yields i = Sni®
reasonable results for macromolecules. Calculating i
the cationic radii from (n = macroscopic viscosity for water at 25 °C) we
obtain the values of the cationic radii given in
Table 6, column 5. For K*, Rb* and Cs* the
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Fig.11. @, KCI(Ref.37); m,KBr (Ref. 37 I <0.05, Ref. 36 1 >0.1); A, KI(Ref. 35); (7, KI, probably erroneous
data (Ref. 37).
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Fig. 12. @, RbCl (Ref. 37, Ref. 35); W, RbBr (Ref. 35); A, RbI (Ref. 35); O, CsCl+CsBr (Ref. 37, Ref. 35);
A\, CsI (Ref. 35).

Stokes radii are less than the Pauling radii which  in highly dielectric solvents there is a substantial
cannot be true. dielectric relaxation drag on a moving ion. In

It is far from obvious, however, that Stokes’ law  contrast to the so-called “relaxation effect” discussed
can be used for an ion of approximately the same in Onsager’s theory of concentration dependence
size as the solvent. One would expect — at least —  of equivalent conductivities of strong electrolytes,
that a “microscopic” viscosity should be applied the ion-dipole relaxation effect operates also at
instead of the macroscopic viscosity. Furthermore, infinite dilution. The effect was first discussed by
as Frank3® has pointed out, it seems to be Born,3° rediscovered by Fuoss*® and quantified
beglected by most researchers that for small ions in terms of modern dielectric theory by Boyd*!
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Table 6. Cationic radii from ASPEV-calculations and from other sources.

Electro- R,+R_ R_ R, R, R, R, +R_[A(c)] R,(MSA)
lyte %\SPEV) g’auling) %SPEV) kStokes) gnodif.BFBZ) A A
HCI 6.3 1.80 - 2.07
HBr 6.6 1.95 4.7(3) - - - 2.13
HI 7.2 2.16 - 2.10
LiCl 6.0 1.80 - 1.94
LiBr 6.3 1.95 4.3(2) 2.35 5.35 - 1.95
Lil 6.7 2.16 - 1.94
NaCl 5.2 1.80 3.5¢ 1.30
NaBr 55 1.95 3.5(2) 1.81 4.05 - 1.34
Nal 59 2.16 2.16 - 1.29
KCl 4.7 1.80 2.80,°2.85,°3.20¢ 091
KBr 49 1.95 2.9(1) 1.23 2.50 - 0.83
KI 5.2 2.16 - 0.75
RbCl 46 1.80 - 0.80
RbBr 4.6 1.95 2.6(2) 1.17 2.10 - 0.59
Rbl 4.7 2.16 - 0.35
CsCl 4.0 1.80 , - 0.58
CsBr 40 1.95 2.0(2) 1.17 2.15 — 0.37
Csl 40 2.16 2.41%2.56,3.49¢ 0.10

“Ref. 45. ® Ref. 46, Table I, D =78.54, first entry. ¢ Ref. 46, Table I, D =78.54, second entry. ¢ Ref. 46, Table VI, D=

78.54.

and Zwanzig.*?> Here we shall call it the BFBZ-
theory. According to this theory one has

lz,|141{,3
0
' C+R}

(76)

For water at 25 °C and with R; in A and A? in
Q7! cm?/mol we have 4=91.7 and C is around
10 A*. We see that for large values of R;, Stokes’
law is approached. It is interesting to observe that
the BFBZ-theory predicts a maximum for the ionic
conductivity. Such a maximum is actually found for
the series F~, C1~, Br™ and I~ when A? is plotted
against the crystallographic radii (see Fig. 13), but
the maximum value of A? predicted by the BFBZ-
theory is too low. However, in view of the small
sizes of the species involved, it is to be expected
that the “macroscopic” constants A and C in (76)
have to be adjusted. Using the height and the
position of the maximum we find for the adjusted
constants A=209 and C=5.33 A. In this way the

“modified BFBZ” curve in Fig. 13 was found. This
curve, together with the values of the limiting ionic
conductivities were used for calculation of the
cationic radii given in Table 6, column 6. There
will be two values of R, giving the same A?, but
the larger of the values was always used.

In Table 6, column 7 some values of R, +R_ are
given which are derived from the deviation from
the simple Onsager formula for equivalent con-
ductivities (A) at higher concentrations.** =46 These
calculations are very involved and not really
clarified, so that those values for the distance, of
closest approach cannot be regarded with much
confidence.

The last column in Table 6 contains the values of

"R, found by Triolo et al.?® by fitting the MSA-

model to data for the concentration dependence of
the osmotic coefficient, using Pauling radii for the
anions. For the K, Rb and Cs halides the cationic
radii are quite inconsistent and also less than the
Pauling radii (see Table 7, column 3). The radii are
generally much lower than the radii obtained from
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"\ Modif.Stokes
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B \
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Fig. 13. Estimating ionic radii from Stokes’ law and from the Born-Fuoss-Boyd-Zwanzig theory of

dielectric relaxation drag; see text.

ASPEYV or from modified BFBZ. In Appendix III
I have calculated Inf, for HCl from the MSA-
theory using the radii of Triolo et al. The fit to
experimental data is not very good (dashed curve
in Fig. 8). Thus, it might be that the other radii given
by Triolo et al. are not optimally fitted either.

Fig. 14 shows a comparison between the cationic
radii calculated by the two independent semi-
empirical methods (ASPEV and modified BFBZ).
The radii are quite consistent and it is observed,
that the ions with the smallest crystallographic
radii are the largest, i.e. the most hydrated. The
hydration numbers are estimated in Table 7. The
values of the apparent ionic volumes used to correct
the volume in the spherical shell between the
Pauling radius and the ASPEV radius are the
volumes reported by Bernal and Fowler (Ref. 32,
Table V). We have

yaop — gnRg +nAV 1)

TT VT [ 7T 3T T v rrrreTs

Conductivity

U T W0 W N B U T U U N
0.5 1.0 15 20
R(Cryst)(A)

Fig. 14. Radii of hydrated cations calculated from
ASPEV-theory compared to radii estimated from
conductivity data. Abscissa: crystallographic radii
of unhydrated cations.

Table 7. ASPEV-calculations of hydration numbers of cations.

Ion R(ASPEYV) R(Pauling) gn/3)(R3 —R}) Vire Hydration n(Ref. 43) n(Ref. 7)
A A 3 A*¢  number,n
H* 47 0 435 -8 15 - 9+1
Li* 43 0.61 332 -8 11 5+1 8+1
Na* 3.5 0.96 176 -85 6 5+1 441
K* 29 1.33 92 +8 3 4+2 2405
Rb* 2.6 1.48 60 +155 2 3+1 1103
Cs* 20 1.66 14 +27 0.2 - -

“ Apparent (= partial) ionic volumes taken from Ref. 32.

Acta Chem. Scand. A 32 (1978) No. 7



590 Torben Smith Serensen

where AV is the volume change per molecule water
bound and n is the number of bound water
molecules. Since a “normal” water molecule at
25 °C occupies 30.0 A% we have

IR~ RY) =30+ AV) (78)

From (77) and (78) and the data in Table 7 we can
calculate the hydration numbers n shown in Table 7,
column 6. They agree with the values of primary
hydration numbers given by Bockris and Reddy*3
(column 7) except for Li*. The ASPEV hydration
numbers also agree roughly with the hydration
numbers according to the theory of Stokes and
Robinson (Ref. 7, Table I) which values are given in
Table 7, column 8. This theory is criticized for a
number of reasons in Appendix II, however.

The substantial success of the ASPEV-theory in
giving radii of cations of uni-univalent electrolytes
in agreement with radii and hydration numbers
derived from other sources seems promising for
future treatment of electrolytes of other valence
types, for which the DHEV-theory also gave a
consistent picture (though the radii were all too
large). It is also my intention to scrutinise the
existing data for electrolyte mixtures in the light of
the ASPEV theory and to consider temperatures
different from 25 °C.
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APPENDIX I. CRITIQUE OF COMMONLY
APPLIED CHARGING PROCEDURES

The solution to the linearised P.B.-eqn. (32) is
given by

hi=CS (A1)

r

The constant C; can be determined by using (31)
and requiring the net charge between r=a and
r=o0 to be equal to the charge on the central ion
with opposite sign. We obtain

z;F e xr—a
x

lp'._41|:‘sNo r

(A-I-2)

Two charging procedures commonplace in littera-
ture (see, e.g., Ref. 31, pp. 80—83 and Ref. 47, pp.
21-23) are the Debye charging process and the
Giintelberg charging process. In the Debye method
we calculate the electrostatic contribution to Helm-
holtz’ free energy as the net work the surroundings
have to do by first stripping the ions for their
charges in infinite dilution (with a Coulomb-poten-
tial around each ion) and then charging all the ions
simultaneously at the given concentration. We
obtain (with charging and discharging in the
distance r =a from the central ions)

Z2F* ([ ¢
‘4 Nosa{jo [1+ax5 B ‘f]dé

Z; F xj 62
‘4nNye Yol + axé

AA, = Zn

=—Z"

d¢

= r(xa)zn 2 (A-1-3)

41|:N €

where n; is the number of mol of the i’th ion and ¢ is
the charging parameter. We have introduced the
function

(A-I-4)

=1 el |11
T(x)= xs[ln(1+x) x+2x ]—3 4x+

The electrostatic contribution to the chemical
potential of the i’th ion is now

AAel
i a( )l _ 4 NO [MH
F272 %
2d( )(”‘"(” ”] T8Nge < 1txa AT

The Giintelberg charging process is more direct.
Here we charge one single ion in a mixture of ions
already charged. The electrostatic contribution to
the chemical potential is then

212
el __ ZI'F 1 é _
H " 4nN,ea jo |:1+a% é] de

2p2
— _ Z; F % x (A-I-6)
8aNge 1+xa
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identical to the expression (A-I-5). There is a serious
drawback in connection with both charging pro-
cesses, however. For small enough ionic strengths
ax< 1. Then the integrands in both (A-I-3) and
(A-I-6) vanish and the electrostatic contribution to
the chemical potential becomes nil. But the potential
distribution given by (34) is still very different from
a Coulomb-distribution (where xr should be ap-
proximately zero for all practical r). Then it is
absurd that there should be no electrosatic contri-
bution to the chemical potential.

The difficulties arise from the inaccurate use of a
as sometimes the distance of closest approach and
sometimes the ionic radii. Tanford*® has given a
more thorough derivation. He considers the poten-
tial around the central ion (1) in the following three
regions:

I. The “interior” of ion 1.

II. The “excluded volume” between ion 1 and the
counterion (2), i.e. the region from r=R; and
r=a=R;+R,.

III. The region of the ionic cloud (r>a). In
regions I and II there can be no charge (the charge
of the central ion is visualized to be smeared out
uniformly at the interface between I and II) and the
Laplace eqn. therefore applies for the electric poten-
tial. In region III the linearised P.B. eqn. applies.
Solving those eqns. together with the continuity
conditions for y and dy/dr at the interfaces I/II and
II/III one obtains

(- ZlF _ le A-I-

V17 = ZNueR, [1 l+xa] (A-I-7a)
 _ z,F 1— xr Al

4 4nNyeR, [ 1+4xa ] (A-1-70)
an _ ZlF exa e " AL

Vi 4nNoe 14xa X r (A-I-Tc)

For the electrical work in a Giintelberg charging
process we have now

el __ Zsz 1 _ le - 1
b= 47N (eR, [ ’[o[l 14+%a jlédé "oﬁdé]
(A-I-8)

and we again find (A-I-5) or (A-I-6) but in a much
more satisfactory way, since we can put ka<l
before the integration without having u§'=0.
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Also the Tanford charging procedure can be
criticised on a more fundamental level, however. For
small xka we obtain for the potential at r=a from
(A-I-7b and ¢)

ZIF

Yir=a) = 47N jea

(A-1-9)

Very near to the central ion, the Debye-Hiickel con-
dition therefore takes the form

FZ
47RTN gea <1 (A-I-10)
However, calculating the quantity on the Lh.s. of
the inequality (A-I-10) with F=96500 C,
a=5x10"1° m, £=69x107'° Farad/m, No=
6.02x 10?3, T=298 K and R=8.31 J/molK we find
the number 1.44! Thus, the assumption behind the
linearisation of the P.B. eqn. is far from valid at the
position where the solution is applied in the charging
process. As rescue for the charging procedures
Giintelberg*® calculated that 97 % of the potential
at r=gq originated from ions at distances r>2a and
88 % from ions at distances r>5a at an ionic
strength of 103 mol/dm?. Since the D.H. assump-
tion is valid at those distances, it does not mean
so much that it fails near to the central ion. The
whole procedure becomes quite artificial and
unpedagogical, however, and the Résibois charging
method used in the main text should be applied
instead.

APPENDIX II. CRITIQUE OF THE THEORY
OF STOKES AND ROBINSON

The hydration theory of Stokes and Robinson’
has been much cited in electrochemical textbooks.
Here we shall follow the derivation given in Ref. 47,
pp. 30— 32 which shows the fundamental assump-
tions more clearly than the original text. For the
Gibbs’ free energy of a mixture of n, mol solvent
and one mol electrolyte we have

G=nopo+Vvifly +v_p =

(no— Mo+ v+ iy +v_p_ (A-II-1)

h is the number of solvent molecules bound to 1
molecule of the electrolyte, and the primed chemical
potentials correspond to the chemical potential of
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free solvent and of solvated electrolyte. It is assumed
that

Ho = Mo (A-11-2)
When the chemical potentials are split up into
standard and variable terms one obtains from
(A-II-1) and (A-11-2)

Vs —pY) vl —p%) | g
RT RT RT
= —hlnao—vlnw —vyInyi—v_Iny*
no

+v,.In(y,) +v_In(@y_)* (A-II-3)
where v=v, +v_ and y* are activity coefficients
based on mol fractions. At infinite dilution ny— co
‘and all the terms on the r.hs. of (A-II-3) become
zero. The Lhs. of (A-II-3) must then be zero in all
cases. Introducing this in (A-II-3), changing to
molal activity coefficients instead of rational activity
coefficients using

1o = 1000/Mom (A-11-4)

7+ =951+ 0.001 v Mom] (A-1I-5)
(M, =molecular weight of solvent) and introducing
mean ionic activity coefficients, we obtain from
(A-11-3)

In[1+0.001 M(v— h)m]

Inyt =In(y,)* —ﬂlnao—
v (A-11-6)

With the following identification

_ AD.H.|Z+Z—| l/i
1+b)/1

formula (A-II-6) is the formula used by Stokes and
Robinson. The solvent activity coefficient is cal-
culated by means of data for the osmotic coefficient
,

In(yy)= (A-11-7)

Inag = —0.001 Mgmv®,, = — ? @, (A-11-8)

(]

Whereas the postulate (A-II-2) séems reasonable
enough, the identification (A-II-7) has no basis in
D.H. theory, whatever. According to D.H. theory

itis Inf, which is equal to the r.h.s. of (A-II-7) and
certainly not the logarithm of the rational activity
coefficient! Furthermore, data for the osmotic
coefficient as a function of concentration has to be
used to calculate the r.hs. of (A-II-6), but from
such data activity coefficients can be calculated
directly by means of the exact thermodynamic
formula

—lny =(1 (A-11-9)

—®,)+ | (1-®,)d Inm
0
[see Ref. 47, p. 8, eqn. (50)]. Therefore, the whole
fitting procedure of Stokes and Robinson seems to
be a redundance. Better derivations of similar
hydration theories have been performed later by
Glueckauf,® Jacobsen and Skou® and Stokes and
Robinson,'® but the formula (A-II-6) with (A-II-7)
and (A-II-8) is the one most cited and used. At any
rate, such expressions are two parameter formulae
with the distance of closest approach as one pa-
rameter (a) and the hydration number (h) as the
other. But those parameters are not independent,

and are united in the excluded volume parameter in
the ASPEV-theory.

APPENDIX III. SAMPLE CALCULATION OF
ACTIVITY COEFFICIENTS IN THE MEAN
SPHERICAL APPROXIMATION MODEL

Triolo et al. [Ref. 26, eqn. (24)] give the following
formula for the osmotic coefficient in the mean
spherical approximation (MSA) model

I rs

Q = = ——
" Hideal 3my

+1 +ﬂ2CsNQ+ﬂ3cs2N(z)

(A-ITI-1)

The generalised inverse Debye length I" is found
as solution to the algebraic eqn. [Ref. 26, eqn. (9)]

vizi

l/ A ey /2 \/Z(1+r )

where « is given by eqn. (33) in the main text and o;
is the hard core diameter of ion number i. The
B-terms in (A-III-1) are of the Percus-Yevick type
with

(A-II1-2)

B2 =33+ La/lo) (A-III-3)
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Table 8. Example of mean spherical approximation calculation of activity coefficients.”
)

Conc. Ty=x/2 Iy I, I'y Iy g(T’y) 28,Noc,  (3/2)B3N2c? Inf,
mol/dm?® A~! At At At At
0.001 0.0052 0.00510 0.00510 -—-0.0358 0.0003 — —0.0355
0.005 0.0117 0.0112 00112 -0.0770 00015 — -0.0755
0.01 0.0164 0.0154 0.0155 00155 —0.1046 00030 — —0.1016
0.05 0.0368 0.0322 0.0327 0.0327 —-0208 0015 - —0.193
0.1 0.052 0.0433 0.0445 00444 —-0271 0.030 0.0002 —0.241
0.5 0.117 0.0806 0.0892 0087 00870 —0470 0.148 0.005 -0.322
1.0 0.164 0.101 0.118  0.113 "~ 0.114 —0.559 0295 0.020 —-0.244
20 0.231 0.122 0.151 0.146  0.148 —0.664 0.590 0.081 +0.007

2 All calculations: Hard core diameters o, =4.14 A, o_ =3.60 A.

2
B =[G+ 60,0, +503)%0] (A-TT1-4)
and
Cll = ZV.‘U? (n =0, 1’ 29 3) (A‘III-S)

Since the ideal osmotic pressure is ITy = RTvc, we
have from (A-III-1) that

D= D)+ ve, 4B Noc +VB NG (AIILG)

From eqn. (13) in the main text we have

== Yo+ jo’c;d Inf’, (A-II1-7)

Introducing

Inf, = g(I'")+ Bc, + Cc;? (A-111-8)

in (A-II1-7) we obtain

I _ ¢ dgdl’ Voo, 2V, 3

BT vjo Gqp i dcs+vcs+2Bcs +3 Cc:
(A-111-9)

Comparison with (A-III-6) makes obvious that the
integral amounts to the h-function, and

Inf, = g0+ 25:Noc, +5B NG (AT
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Blum and Heye [Ref. 25, eqn. (3.11)] have given the
following formula for g(I') according to the MSA-
model

T
167N oc, z

viz?
1+To;

gn) = — (A-III-11)

This is a very interesting formula, since it is to my
knowledge the only example of a modern statistical
mechanical theory yielding a formalism somewhat
similar to the original D.H. expression (A-I-6).
Take a uni-univalent electrolyte, for example, and
put 6, =6_=a. From (A-III-2) it is obvious, that
I' for small concentrations is equal to /2. Inserting
this and the definition of k in (A-III-11) we again
find the D.H. expression (A-I1-6).

Triolo et al. have fitted the MSA-model to
osmotic coefficient data for 23 uni-univalent elec-
trolytes. For HCI they have found ¢, =4.14 A and
6_=360 A. From those diameters I' can be
calculated from (A-III-2) inserting I'y=x/2 on the
r.hs., thereby calculating I'; and so on. Three or
four iterations are necessary for a precision of 1 %.
Then In f, can be calculated by (A-III-10 & 11).
The results are given in Table 8 and represented as
the dashed line in Fig. 8. The fit to experimental
data does not seem very good, so perhaps the
values of the hard core diameters found by Triolo
et al. should be reconsidered.
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