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Matter in gravitational and electric fields. In my
third paper in the series “Towards a Rational
Thermodynamics™! 1 pointed out that a straight-
forward generalisation of the Gibbs-Duhem equa-
tion to include the effect of external fields — such
as proposed by La Mer, Foss and Reiss2 — leads to
contradictions with well-established facts, e.g. that
pressure gradients exist at equilibrium in gravita-
tional fields. In a short communication® by Torben
Knudsen my propositions are criticised. He argues
that the “generalised” Gibbs-Duhem equation
should rather be (in the case of only a single com-
ponent present)

du—VdP+ VdP + Mdp =0 1)

where the first — VdP term is the “normal” Gibbs-
Duhem term due to local equilibrium or — in Bren-
sted’s terminology — the work principle, applied to
infinitesimally diverging systems. The second + VdP
term should then be a work term due to the change
in position of the volume elemnt (V) as a whole in
the pressure gradient regarded as an “external
field”.

To me Knudsen’s arguments seem to be of an
ad hoc nature. It is very confusing to operate with
two sorts of pressures: an internal and an external.
It is very confusing — and inconsistent with usual
lines of thought in physics and irreversible thermo-
dynamics — to speak about pressure as an
external field. In the momentum balance equation
the action of external fields shows up as a source
term [see, e.g., Ref. 4, egn. (1.31)], since momentum
is introduced into the volume element from distant
momentum-reservoirs through the action of the
external fields. On the contrary, pressure may be
considered as a flux of momentum from neighbour-
ing volume elements. Although pressure gradients
are sometimes consequences of the action of external
fields, they do not generically belong to the class of
external fields. Finally, trying to follow the argu-
ments of Knudsen, it is difficult to understand why
the “internal” pressure should contribute the term
—VdP to the Gibbs-Duhem equation, while the
“external” pressure contributes with + VdP. A clear
cut Bronstedian process of building up the system
is lacking in Knudsen’s communication.

It was exactly such a procedure for building up
the system which I devised in my paper (see Ref. 1,
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Fig. 1) to explain why a homogeneous integration of
the total internal energy (Gibbs’ internal energy +
potential energy) is not possible — and similarily
not a “generalisation” of the Gibbs-Duhem equa-
tion. However, there is one important comment in
Knudsen’s paper regarding this point: It is indeed
possible to build up a system in a one-dimensional
gravitational field by adding quantities in fixed
proportions without changing any of the potentials.
One just has to add quantities in a direction per-
pendicular to the field. Thus, with this interpretation
of the differentials (dK) a homogeneous integration
of the complete internal energy to E=ZXPK is
possible and a generalised Gibbs-Duhem equation
of the form

SAT— VdP + Endji; =0 )

can be derived. It might have been this interpretation
of the generalised G.D. equation which La Mer,
Foss and Reiss had in mind, but then it is confusing
that they speak about eqn. (2) in connection with
discussion of the equilibrium conditions (dfi; =0)
in the direction of the field. -
A similar example where a generalisation of
Gibbs-Duhem’s equation is possible — and highly
useful — is given by the case of an electric double
layer at a liquid-liquid interface. We consider the
system as composed of bulk phase I with surface
layer « and bulk phase II with surface layer . The
two dividing surfaces and the interfacial surface are
selected so that phases I and II are electroneutral
and the positive surface charge of « corresponds to
the negative surface charge of f. By building up
the system in the directions of the interface we
derive the following generalised Gibbs-Duhem
equation (T and P taken as constants for brevity)

Tnldjil + Tl + AT T2 +
II¥dj + Ado =0 3)

where A is the interfacial area of the final system, I';
are surface excess concentrations and ¢ is the
interfacial tension. Since we have electroneutrality
in the bulk solutions we have separately for each
bulk solution

Indf; = Zndy; + (Zz,Fn)dy = Zndy, =0 4)

Due to equilibrium between bulk solution and
surface, the bulk electrochemical potentials equal
the surface electrochemical potentials, and we
obtain

do = —XTidjif — ZTTdif )
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From eqn. (5) it is a simple matter to derive the
classical Lippmann equation® of relevance for the
study of effects of electrocapillarity at an interface
between mercury and an electrolyte solution. The
derivation given here is the one usually given (see,
e.g., Ref. 6), but unfortunately not very many
thermodynamicians pose themselves fundamental
questions concerning when and why generalisations
of the Gibbs-Duhem equation can be made. The
rule which has been found in Ref. 1 and here is
straightforward: Whenever a way of building up
the system in question can be found, such as by
adding the quantities in fixed proportions to the
different localities in the system, all the potentials
remain constant, we are able to integrate the
internal energy to E=XPK and thereby to obtain
a generalised Gibbs-Duhem equation ZKdP=0.

Matter in temperature gradients and the use of
quasi-thermostatic arguments. Knudsen’s critique
of my treatment of the equilibrium of matter in
temperature gradients is based upon a misinter-
pretation of what I have written in Ref. 1. T have
never doubted that his eqns. (1) or (6) apply. On the
contrary, I used the same equation (Ref. 1, p. 442, 1st
column, line 15 from above). But this equation is
Just a “passive” expression of local equilibrium and
therefore useless as an equation of dynamic balance.
Just as we have for equilibrium in an electric field
at isothermal and isobaric conditions

dit = dp,+ z,Fdy =0 6)

together with the obvious equation

n=1
dy; — jg:l (Ow;/0X ;)dX; =0, it would be tempting to
use

dp; + S, dT=0 M

as a general balance equation for matter in tempera-
ture gradients. In Ref. 1 I have shown, how it is
possible to derive the relation between thermo-emf
and Peltier-entropy using eqn. (7). Another variant
of this “quasi-thermostatic” method was used
already by Thomson in 1854.7 The two effects are
according to this argumentation related, since the
partial molar entropy of the electron appears in both
expressions. This method of using -equilibrium
thermodynamics on non-equilibrium problems is
far from unproblematic, however, as understood
already by Thomson himself. It is therefore some-
what unfortunate, that Brensted® used the same
kind of arguments at a time where irreversible
thermodynamics had reached recognition of the
connection between thermo-emf and Peltier-effect
as being due to the Onsager reciprocal relations.

Since many chemists still have a “quasi-thermo-
static” picture of the world, however, I wanted to
point out clearly the inconsistencies connected with
the use of eqn. (7). In the case of a single, neutral
solute in a temperature gradient, the use of (7)
precludes any Soret-effect. Also, the experiments of
of Denbigh and Raumann on thermo-osmosis with
rubber membranes ® show clearly that the “entropies
of transport™ have nothing to do with partial molar
entropies. I would not expect either that the entropy
of transport of the electron should have anything
to do with the partial molar entropy of the electron,
but at present I am not aware of any independent
method of measuring partial molar entropies of
electrons in metallic conductors.
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