Substituted Propanes. XIII. The Vibrational Spectra of 2,2-Dichloropropane- d_6 P. KLÆBOE, a A. P. MATHER a and B. N. CYVIN b ^a Department of Chemistry, University of Oslo, Oslo 3, Norway and ^b Division of Physical Chemistry, University of Trondheim, N-7034-NTH Trondheim, Norway The infrared spectra of 2,2-dichloropropane- d_6 as a vapour, liquid and crystalline solid at $-180~^{\circ}\mathrm{C}$ were recorded in the region $4000-200~\mathrm{cm}^{-1}$. Raman spectra of the liquid were obtained and polarization data presented. The fundamental frequencies have been assigned in terms of C_{2v} symmetry. A normal coordinate analysis reproduced the fundamentals of 2,2-dichloropropane and the d_6 -derivative satisfactorily. The assignments for the parent molecule were slightly changed on the basis of this work. We have been interested in halogenated propanes for some time and have reported the vibrational spectra of certain 2-halopropanes 1-3 and 2,2-dihalopropanes 4 as well as force fields derived for these molecules. 5.6 Since the spectra of isopropylhalides are not complicated by the conformational equilibria present in the propyl halides, they can therefore be interpreted with some confidence. The spectra of 2,2-difluoropropane were published by Crowder and Jackson 7 who also derived a force field for this compound. The spectra of 2,2-dichloropropane were reinvestigated by Green and Harrison⁸ (hereafter referred to as GH) who changed some of the earlier⁴ assignments. Since the fully deuterated molecule 2,2-dichloropropane- d_6 is now commercially available, we decided to study its spectrum. We hoped that these data would be useful for developing a more reliable force field which might settle some of the controversial assignments for the parent molecule. ## **EXPERIMENTAL** The sample of 2,2-dichloropropane- d_6 was a commercial product from Merck, Sharp & Dohme of Canada Limited, investigated without purification. No impurity peaks were detected by gas chromatographic analysis. The isotopic purity was high since no IR or Raman bands were observed which could be attributed to C-H stretch. Moreover, the most intense IR vapour bands at 1119 and 669 cm $^{-1}$ of the parent compound 4,8 were not detected in the spectra of the fully deuterated species. The infrared spectra were recorded in the region $4000-200~\rm{cm^{-1}}$ with a Perkin-Elmer model 225 spectrometer. Vapour cells with windows of KRS-5 and CsI had path lengths of 1 m and 10 cm, respectively. Sealed cells having KBr and CsI windows were used for the liquid, while a conventional cryostat with CsI windows was employed for the crystalline solid at $-180~\rm{^{\circ}C}$. Raman spectra of the liquid were obtained with a modified ⁹ Cary 81 spectrometer using the 5145 and 4880 Å lines from an argon ion laser (CRL 52 G) for excitation. # SPECTRAL INTERPRETATION 2,2-Dichloropropane- d_6 . The present compound, obviously has C_{2v} symmetry like the parent molecule. Assuming tetrahedral angles and the bond distances: C-C=1.54, C-D=1.09 and C-Cl=1.795 Å we calculated the following principal moments of inertia: $I_A=170.57$, $I_B=228.06$ and $I_C=260.06$ a.m.n. Å.² Since the orientation of the I_A , I_B and I_C axes were parallel with those of the parent molecule⁴ the various IR active fundamentals should have the same rotational contours for both molecules. The PR sparations were esti- Table 1. Infrared and Raman spectral data for 2,2-dichloropropane- d_6 . | Infrared
Vapour | | | Raman | Assignments | |----------------------------------|---------|--------------------|--------------------|--| | | liquid | Solid
(-180 °C) | liquid | | | 2960 vw
2430 vw | 2960 vw | 2960 vw
2405 | 2962 vw
2395 vw | | | 2258 m)
2252 s { | 2265 | 2265 | 2264 m,P | $v_1 a_1 \text{ fund}$ | | , | 2246 s | 2252 | 2247 s,D | v_{22} b_2 fund | | 2248 m
2242 s
2235 w C | 2238 s | 2249)
2239} | 2242, m,D | v_{15} b_1 fund | | | | | 2215 w,D | v_{10} a_2 fund | | 2160 m | 2151 | 2155 | 21.42 D | | | 2153 m | 2142 | 2140 | 2142 m,P | A ₁ comb | | 2131 m | 2122 | | 2122 vs,P | v_2 a_1 fund | | 2118 m | 2110 | | 2111 s,P | A_1 comb FR | | $\frac{2109}{2101 \text{ m}}$ C? | 2093 | | 2095 w,D | v_{16} b_1 fund | | 2092 | 2093 | | 2093 W,D | v ₁₆ 0 ₁ rund | | 2077 w | 2070 | 2065 | 2069 w,P | A_1 comb | | 2025 w | 2015 | | 2022 w,P | A_1 comb | | 1288 w | 1275 | 1280 | , | • | | 1212 m) | | | | | | 1207 s | | | | | | 1205 vs | | 1205) | | | | 1203 s {C | 1200 | 1205) | 1204 w,D | v_{17} b_1 fund | | 1202 s | | 1198} | | hot bands | | 1200 s | | | | | | 1194 mJ | | | | | | 1143 s | | | | | | 1138 s { | 1127 | 1132 | 1134 m,P | v_3 a_1 fund | | 1135 s B | 1127 | 1132 | 1134 111,1 | v_3 a_1 runu | | · 1129 s J | | | | | | 1113 w) | | 1108) | | | | 1105 w } | 1105 | 1090 | 1108 vw | v_{23} b_2 fund | | 1097 w ^J | | 1050) | | | | | | | 1068 vw | v_{11} a_2 fund | | 1070 | 1056 w | 1055 | | | | 1062 s | 1040 | 1058) | 1040 B | , c 1 | | 1052 s A | 1048 | 1045 | 1049 m,D | v_{24} b_2 fund | | 1048 s / | 1027 | , | 1027 | | | 1042 s C | 1037 | 1035 | 1037 w | v_{18} b_1 fund | | 1023 s | | 1011) | | | | 1016 s
1013 s
1006 s | 1005 | 1011 | 1011 vs,P | v_4 a_1 fund | | 1013 8 | | 1005 | | | | 1006 s J
980 vs) | | | | | | 973 vs \ C? | 963 | 952 | 963 m,P | v_5 a_1 fund | | 962 s | 703 | 7.52 | 705 III,I | v ₅ u ₁ runu | | 932 s) | | | | | | 920 vs C | 922 | 919 | 924 vw | v_{19} b_1 fund | | 914 s | 144 | 717 | 747 VW | v ₁₉ <i>v</i> ₁ runu | | 852 m | 839 | | | | | 830 m,C | 826 | 827 | | | | 050 m,C | 020 | 021 | | | Table 1. Continued. | 822 m
813 w | 806 | | | | |----------------------------------|---------------|-------------------|--------------------|--| | 788 s 782 s 779 s B | 778 | 785)
780} | 782 s,P? | v_6 a_1 fund | | 772 s J | | • | 744 w | v_{12} a_2 fund | | 750 w
739 m
732 w | 736 | 740 | | v_{20} b_1 fund | | 654 s
649 s
646 s
638 s | 648 | 668
652 | | A comb? | | 618 vs
610 vs
602 vs | 598 | 604
582 | 598 vs,D | v_{25} b_2 fund | | 538 s
530 s
527 m
520 s | 526 | 530
523
520 | 525 vs,P | v_7 a_1 fund | | 485 vw
450 w | 482 | 470
455 | 487 vw
430 vw? | | | 359 m
350 m
341 m
329 w | 350 | 353 | 352 w | v_{21} b_1 fund | | 322 w
319 w
313 w | 325 | 324 | 327 s,P | v_8 a_1 fund | | 302 w | 291 | | 290 vw
252 s,D | v_{26} b_2 fund v_{13} a_2 fund | | 240 m | 245
204 vw | 250
205 m | 244 m,P?
204 vw | v_{13} a_2 fund
v_9 a_1 fund
v_{27} b_2 fund | ^a The weak infrared and Raman bands in the regions 5000-2400 cm⁻¹ and 2000-1300 cm⁻¹ are omitted. ^b Abbreviations: s, strong; m, medium; w, weak; v, very; P, polarized; D, depolarized; A, B and C denote vapour contours. mated 10 to be 14, 16 and 18 cm $^{-1}$ for A (b_1), B (a_1) and C (b_2) contours, respectively. Many of the observed vapour contours were well resolved, while others were more diffuse and not as valuable for the assignments as in the parent molecule. The Raman polarization data are very useful for determining the polarized a_1 modes, but cannot differentiate between the b_1 and b_2 modes. Moreover, the IR inactive a_2 fundamentals are often very weak in the Raman spectra and their identification therefore uncertain. The actual IR and Raman spectral curves are not reproduced for the sake of brevity, but the wave numbers for the observed bands are listed in Table 1. In Table 2 the assigned fundamentals are collected together with the results of the normal coordinate calculations. The nine fundamentals of species a_1 can be assigned with considerable confidence to strongly polarized Raman bands of generally high intensities at 2264, 2122, 1134, 1011, 525 and 327 cm⁻¹ while those at 963, 782 and 244 cm⁻¹ were only slightly polarized. Generally, these Raman bands corresponded to infrared bands with prominent *B*-contours in the vapour, such as 1136, 1014, 780, 528 and 320 cm⁻¹ which had the expected *PR* as well as the QQ splitting. Exceptions were the vapour bands around 973 cm⁻¹ which had a sharp Q-branch Table 2. Observed and calculated fundamental frequencies (in cm⁻¹) for 2,2-dichloropropane-d₆. | Species | No. | Obs. ^a | Calc. | Potential energy distribution ^b | Approximate motions | |------------------|-----------------|-------------------|-------|--|--------------------------| | $\overline{a_1}$ | v ₁ | 2252 | 2250 | 97(s-t) | CD ₃ as.str. | | | v_2 | 2131 | 2131 | 97(s+t) | CD ₃ sym.str | | | v_3 | 1136 | 1169 | $52r + 33\gamma^{+}$ | C-C str. | | | v_4 | 1014 | 1023 | 85γ ⁻ | CD ₃ as.bend | | | v_5 | 973 | 981 | $43\gamma^+ + 23(\varepsilon - \delta) + 23\alpha$ | CD ₃ sym.bend | | | v_6 | 781 | 764 | $47(\varepsilon-\delta)+21r$ | CD ₃ rock | | | v_7 | 528 | 523 | 44d + 26r | C-Cl str. | | | v_8 | 320 | 315 | $112\beta + 90\alpha$ | mixed | | | v ₉ | 240 | 247 | $31\beta + 22\alpha$ | HIIACU | | a_2 | v_{10} | 2215° | 2223 | 98(s-t) | CD ₃ as.str. | | | v ₁₁ | 1068 ° | 1061 | 90ŷ - | CD ₃ as.bend | | | v ₁₂ | 744° | 766 | $91(\varepsilon-\delta)$ | CD ₃ rock | | | v ₁₃ | 252° | 248 | 92β | ClCC bend | | | v ₁₄ | _ | 203 | 83τ | torsion | | b_1 | v ₁₅ | 2242 | 2237 | 98(s-t) | CD ₃ as.str. | | • | v ₁₆ | 2101 | 2116 | 97(s+t) | CD_3 sym.str. | | | v ₁₇ | 1205 | 1233 | $65\hat{r} + 19\hat{\gamma}^{+}$ | C-C str. | | | v ₁₈ | 1042 | 1038 | 90y - | CD ₃ as.bend | | | v ₁₉ | 920 | 917 | 66γ ⁺ | CD ₃ sym.bend | | | v ₂₀ | 739 | 738 | $72(\varepsilon-\delta)$ | CD ₃ rock | | | v ₂₁ | 350 | 351 | $72\hat{\beta} + 1\hat{7}r$ | ClCC bend | | b_2 | v_{22} | 2246 d | 2238 | 98(s-t) | CD ₃ as.str. | | ~ | v ₂₃ | 1105^{d} | 1101 | $41(\varepsilon-\delta)+21\beta+21d$ | CD ₃ rock | | | v ₂₄ | 1052 | 1044 | 81y ⁻ | CD ₃ as.bend | | | v ₂₅ | 610 | 586 | $54(\varepsilon-\delta)+48d$ | C-Cl str. | | | v ₂₆ | 302 | 304 | $49\hat{\beta} + 28d + 22\tau$ | CICC bend | | | v ₂₇ | 204 | 200 | 66τ | torsion | ^a Infrared vapour values except when noted. ^b Terms below 15 are omitted. ^c Raman liquid values. ^d Infrared liquid values. suggesting C-contour. Our remaining four a_1 fundamentals had vapour contours which were ill-defined and of no aid to the assignments. Some additional Raman bands appeared polarized (e.g. at 2142, 2111, 2069 and 2022 cm⁻¹) which could all be explained as combination bands or overtones of species A_1 . The a_2 fundamentals $(v_{10} - v_{12})$ were assigned to the weak or very weak Raman bands at 2215, 1068, 744 with unknown polarization ratios. Since the 2215 and 744 cm⁻¹ bands were 23 and 8 cm⁻¹ removed from IR liquid bands they are not as definite choices for a_2 as would be preferred. A strong, depolarized Raman band at 252 cm⁻¹ appears as a good choice for v_{13} . No likely Raman band was observed for the CD₃ torsional mode v_{14} . Vapour bands, having C-type contours with sharp central Q-branches were observed at 2242, 2101, 920, 739 and 350 cm⁻¹ and should therefore be assigned as b_1 -modes. The polarization ratios for some of the Raman counterparts were not known because of low intensities. The sharp peaks commencing at 1207 cm⁻¹ with 2 cm⁻¹ spacing and diminishing intensities apparently form a hot band progression of the Q-branches. A very sharp band at 1042 cm⁻¹ is apparently the central branch of a C-type band but the contours are obscured by the neighbouring A-type band. As mentioned previously, the a_1 modes at 973 and 530 cm⁻¹ have contours more like C than B, but the polarized Raman counterparts rule out the possibility for b_1 -modes. Vapour bands with definite A-contours were Table 3. Observed and calculated fundamental frequencies (in cm⁻¹) for 2,2-dichloropropane. | Species | No. | Obs. | Calc. | Potential energy distribution ^a | Approximate motions | |-----------------------|-----------------|-------------------|-------|---|--------------------------| | a_1 | v_1 | 3010 | 3012 | 99(s-t) | CH ₃ as.str. | | | v_2 | 2943 | 2943 | 99(s+t) | CH ₃ sym.str. | | | v_3 | 1440 | 1427 | $85\gamma^- + 16(\varepsilon - \delta)$ | CH ₃ as.bend | | | v_4 | 1391 | 1360 | $86\gamma^{+} + 16r$ | CH ₃ sym.bend | | | v ₅ | 1163 | 1163 | $57(\varepsilon-\delta)+20\alpha$ | CH ₃ rock | | | v_6 | 915 | 937 | 48r + 17d | C-C str. | | | v_7 | 562 | 575 | $44d + 26r + 19\alpha$ | C-Cl str. | | | v_8 | 359 | 358 | $112\beta + 89a + 18d$ | mixed | | | v_9 | 258 | 249 | $34\beta + 20\alpha$ | IIIIxeu | | a_2 | v_{10} | 2990 ^b | 2978 | 99(s-t) | CH ₃ as.str. | | | v ₁₁ | 1447 | 1470 | 88γ ⁻ | CH ₃ as.bend | | | v ₁₂ | 1020 ° | 1000 | $90(\varepsilon - \delta)$ | CH ₃ rock | | | v ₁₃ | <i>2</i> 87 | 294 | $67\hat{\tau} + 20\beta$ | torsion | | | v ₁₄ | _ | 269 | $78\beta + 19\tau$ | ClCC bend | | b_1 | v ₁₅ | 2993 | 3000 | 99(s-t) | CH ₃ as.str. | | • | v ₁₆ | 2943 | 2922 | 99(s+t) | CH ₃ sym.str. | | | v ₁₇ | 1453 | 1457 | 83γ ⁻ | CH ₃ as.bend | | | v ₁₈ | 1377 | 1352 | $64\dot{\gamma}^{+} + 30r$ | CH ₃ sym.bend | | | v ₁₉ | 1119° | 1121 | $27\gamma^{+} + 27r + 27(\varepsilon - \delta) + 16\beta$ | mixed | | | v ₂₀ | 954 | 954 | $58(\varepsilon - \delta) + 25r$ | CH ₃ rock | | | v_{21} | 388 | 387 | $77\hat{\beta} + 17r$ | ClCC bend | | <i>b</i> ₂ | v_{22} | 2993 ° | 2998 | 99(s-t) | CH ₃ as.str. | | | v ₂₃ | 1463 | 1480 | 83γ ⁻ | CH ₃ as.bend | | | v ₂₄ | 1192 ^b | 1198 | $51(\varepsilon-\delta)+19\beta$ | CH ₃ rock | | | v ₂₅ | 669 | 704 | $52\hat{r} + 3\hat{5}(\varepsilon - \delta) + 28\beta$ | C-Cl str. | | | v ₂₆ | 359° | 339 | $41\tau + 32\dot{d} + 29\beta$ |) mixed | | | v ₂₇ | _ | 271 | $44\tau + 28\beta$ | torsion + ClCC bend | ^a Terms below 15 are omitted. ^b In variance with Ref. 4 and GH Ref. 8. ^c According to GH, Ref. 8, in variance with Ref. 4. observed at 1052 and 610 cm⁻¹, most certainly the b_2 -fundamentals v_{24} and v_{25} . The remaining modes of this symmetry species are more uncertain; thus v_{22} was assigned to the strong bands at 2246 cm⁻¹ (IR liquid) and 2247 cm⁻¹ (Raman), overlapping v_1 and v_{15} in the vapour phase. A weak IR vapour band at 1105 cm⁻¹ with possible A-contour appeared as a shoulder on the intense v_3 , but having a very weak Raman couterpart was assigned as v_{23} . The two low frequency b_2 fundamentals v_{26} and v_{27} are tentatively attributed to the weak IR bands at 302 cm⁻¹ (vapour) and 204 cm⁻¹ (liquid), respectively, both having very weak Raman counterparts. 2,2-Dichloropropane. From the force field developed for these molecules (see below) and from spectral analogies with the fully deuterated compound, we have revised the assignments for the parent molecule. The fundamentals which are revised compared to our earlier assignments are written in italics in Table 3, in many cases they agree with those of GH.⁸ No revisions were made for the a_1 modes $(\nu_1 - \nu_9)$. The CH stretch of species a_2 was reassigned to the depolarized Raman band at 2990 cm⁻¹ which overlaps ν_{15} as a consequence of the force constant calculations. The Raman band at 2908 cm⁻¹ previously ⁴ assigned as ν_{15} can be explained as $\nu_{17} + \nu_{23}$. Moreover, we agree with GH's ⁸ attributions of the Raman bands at 1020 and 287 cm⁻¹ as ν_{12} and ν_{13} , respectively, while the torsional mode ν_{14} remains unobserved. Among the b_1 fundamentals all our previous assignments⁴ were supported by the force field calculations. Since the CH₃ rocking mode of species b_2 according to the calculations is expected at higher Fig. 1. Definition of the valence coordinates for the propane molecular model. r, d, s and t are stretchings. The γ type bendings are shown only for the methyl group II while the δ 's are exemplified by δ_1^1 only. The torsions τ_1 and τ_2 (not shown on the figure) involve the atoms 6-3-5-4 and 7-4-5-3, respectively. wavenumbers than the corresponding b_1 fundamental, we have not followed GH in substituting 1119 cm⁻¹ with 1192 cm⁻¹ for v_{19} , although the contour looks more like A than C. The asymmetric CH₃ stretch v_{22} of species b_2 has been considered accidentally degenerate with v_{15} (b_1). For v_{24} we have assigned the band at 1192 cm⁻¹, previously attributed to v_{12} , but shown by GH to have an IR counterpart. We have verified that our previous weak band at 332 cm⁻¹ was due to an impurity. Thus, there is no other apparent choice for v_{26} than assuming overlap with v_8 at 359 cm⁻¹ as suggested by GH. No good choice was found for v_{27} , which as a torsional fundamental should be very weak and might be hidden by v_9 . ## NORMAL COORDINATE ANALYSIS As a help in the assignment discussed above a normal coordinate analysis based on symmetry coordinates was performed. It seems of little interest to go into any details of these calculations here. Finally calculated frequencies for 2,2-dichloropropane- d_6 and 2,2-dichloropropane including the potential energy distributions (PED) are given in Tables 2 and 3, respectively. The potential energy distributions are expressed in terms of the valence coordinates defined in Fig. 1. Acknowledgement. Financial support from Norges Almenvitenskapelige Forskningsråd and a grant to APN from IAESTE are acknowledged. ## REFERENCES - 1. Klæboe, P. Spectrochim. Acta Part A 26 (1970) - Klæboe, P., Linde, A. and Cyvin, B. N. Spectrochim. Acta Part A 30 (1974) 1513. - 3. Gustavsen, J. and Klæboe, P. Spectrochim. Acta Part A 32 (1976) 755. - 4. Klæboe, P. Spectrochim. Acta Part A 26 (1970) 977. - Cyvin, B. N. and Cyvin, S. J. Acta Chem. Scand. 26 (1972) 3943. - Andresen, I.-L., Cyvin, S. J., Larsen, B. and Törset, O. Acta Chem. Scand. 25 (1971) 473. - 7. Crowder, G. A. and Jackson, D. Spectrochim. Acta Part A 27 (1971) 1217. - 8. Green, J. H. S. and Harrison, D. J. Spectrochim. Acta Part A 27 (1971) 1217. - Gilbert, B. and Duyckaerts, G. Spectrochim. Acta Part A 26 (1970) 2197. - 10. Seth-Paul, W. A. and Dijkstra, G. Spectrochim. Acta Part A 23 (1967) 2861. Received October 5, 1977.