- 1. Schneider, F. and Lippert, E. Ber. Bunsenges. Phys. Chem. 72 (1968) 1155; 74 (1970)
- 2. Kosower, E. M. and Tanizawa, K. Chem. Phys. Lett. 16 (1972) 419.
- Kosower, E. M. J. Am. Chem. Soc. 80 (1958)
- 4. Kosower, E. M., Dodiuk, H. and Kanety, H. Submitted for publication.
- Thulin, B. and Wennerström, O. Acta Chem.
- Scand. B 30 (1976) 688.
 6. Birks, J. B. Photophysics of Aromatic Molecules, Wiley-Interscience, New York 1970, pp. 104-106; Vanderdonckt, E., Nasielski, J., Greenlea, J. R. and Birks, J. B. Chem. Phys. Lett. 2 (1968) 409.
- 7. Berson, R. and Horowitz, H. J. Chem. Phys. 63 (1975) 48.
- 8. Reicardt, C. and Dimroth, K. Fortschr. Chem. Forsch. 11 (1968) 1.

Received March 29, 1977.

Mass Spectral Differentiation of Some Unsymmetrically Substituted Isomeric Dihydrobarbiturates

MARJATTA RAUTIO a and MAURI LOUNASMAA b

a Department of Pharmaceutical Chemistry, University of Helsinki, SF-00170 Helsinki 17, Finland and b Laboratory for Chemistry of Natural Products, c/o Technical Research Centre, Chemical Laboratory, SF-02150 Espoo 15, Finland

Recently it has been shown that the sodium borohydride reduction of some unsymmetrically substituted barbituric acid derivatives such 1-methyl-5-ethyl-5-phenylbarbituric (MEPBA, 1) leads to the formation of two different dihydrobarbiturates.1 From a mass spectral investigation of the products formed it was found that mass spectrometry provides a method by which they can be easily distinguished. In the present communication we describe the results mainly obtained using the dihydrobarbiturates 2 and 3, derived from 1.

The mass spectral fragmentation of unre-

duced barbituric acid derivatives is well-known and it has been shown that the preferential fragmentation is strongly influenced by the nature of the C-5 substituents.2-4 See also Refs. 5-11.

Fig. 1 shows the mass spectrum of 1-methyl-5-ethyl-5-phenyl-6-dihydrobarbiturate 2. The fragmentation is strongly dominated by the formation of an abundant ion corresponding to m/e 146 (base peak). Its formation and further fragmentation are depicted in Scheme 1. The loss of water from the molecular ion has also taken place to a certain extent.

Fig. 2 shows the mass spectrum of 1-methyl-5-ethyl-5-phenyl-4-dihydrobarbiturate 3. The formation of the base peak at m/e 146 can be depicted in a manner analogous to the previous case (Scheme 2, Route A). The elimination of water leads to the ion of m/e 230* which may fragment to the ion of m/e 146. However, its main fragmentation path is of retro-Diels-Alder type, leading to an abundant ion of m/e 173. Its formation and further fragmentation are depicted in Scheme 2 (Route B).

It is worthy of note that the McLafferty rearrangement of the C-5 ethyl substituent, dominating the mass spectral fragmentation of similar unreduced barbituric acid derivatives (e.g. 5-ethyl-5-phenylbarbituric acid, Luminal® 4),3 is not present in any appreciable amount in either case.

The importance of the retro-Diels-Alder process in the mass spectral behaviour of 3, in all probability due to the vicinity of the OH- and NH-groups permitting the thermal 1,2-elimination of water (vide supra), can be used successfully to differentiate between 2 and 3. In an analogous manner, the peaks at m/e 159 and m/e 149 in the mass spectra of 6 and 8, respectively, permit the differentiation of 6 and 8

* The peak at m/e 230 (vide supra) is, in all evidence, due mainly to the molecular ion of the olefin produced by thermal loss of water prior to ionization.

7. $R_1 = R_2 = CH_2 = CH - CH_2$

$$R_1 = \begin{bmatrix} 1 & 1 & 1 \\ C & -N & 1 \\ C & C = 0 \\ R_2 & C - N & 1 \\ H & OHH & 1 \end{bmatrix}$$

3. R₁ = C₆H₅; R₂ = C₂H₅ 6. R₁ = C₆ H₅; R₂ = CH₃ 8 R1 = R2 = CH2 = CH - CH2

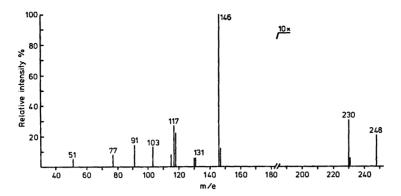


Fig. 1. Mass spectrum (70 eV) of 1-methyl-5-ethyl-5-phenyl-6-dihydrobarbiturate 2.

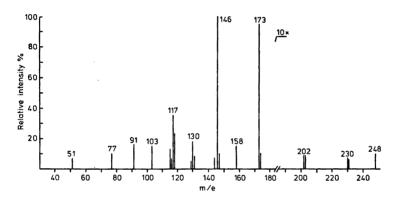


Fig. 2. Mass spectrum (70 eV) of 1-methyl-5-ethyl-5-phenyl-4-dihydrobarbiturate 3.

Scheme 1.
Acta Chem. Scand. B 31 (1977) No. 6

Route A

$$H_3C-H_2C$$
 $C = 0$
 $C = 0$

Scheme 2.

from their corresponding C-6-OH isomers 5 and 7.

Experimental. The preparation of dihydrobarbiturates 2, 3, 5, 6, 7 and 8 has been described earlier. The mass spectra were recorded on a Jeol JMS-D-100 Mass Spectrometer at 70 eV using direct sample insertion into the ion source, whose temperature was 110-120 °C. The presence of metastable ions, when indicated, was confirmed by measurements performed using a Hitachi Perkin-Elmer RMU 6E instrument.

- 1. Rautio, M. Ann. Acad. Sci. Fenn. Ser. A 2 178, Thesis, University of Helsinki, Finland 1976.
- Costopanagiotis, A. and Budzikiewicz, H. Monatsh. Chem. 96 (1965) 1800.
- 3. Grützmacher, H.-F. and Arnold, W. Tetrahedron Lett. (1966) 1365.
- 4. Budzikiewicz, H., Djerassi, C. and Williams, D. H. Mass Spectrometry of Organic Compounds, Holden-Day, San Francisco 1967, p. 509.
- 5. Coutts, R. T. and Lolock, R. A. J. Pharm.
- Sci. 57 (1968) 2096.Gilbert, J. N. T., Millard, B. J. and Powell, J. W. J. Pharm. Pharmacol. 22 (1970) 897.
- 7. Thompson, R. M. and Desiderio, D. M. Org. Mass Spectrom. 7 (1973) 989.
- 8. Watson, J. T. and Falkner, F. C. Org. Mass. Spectrom. 7 (1973) 1227.

- 9. Skinner, R. F., Gallaher, E. G. and Pred-
- more, D. B. *Anal. Chem.* 45 (1973) 574.

 10. Harvey, D. J., Nowlin, J., Hickert, P.,
 Butler, C., Cansow, O. and Horning, M. G. Biomed. Mass. Spectrom. 1 (1974) 340.
- 11. Falkner, F. C. and Watson, J. T. Org. Mass. Spectrom. 8 (1974) 257.

Received March 9, 1977.