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Available methods for the determination of
vapour pressures at high temperatures appear
to leave a demand for an experimentally simple
method for the measurement of pressures above
the range of molecular flow. A method originat-
ing from the early work of Ruff and co-workers
is considered for the purpose. In this method,
the rate of vapour transport through a capil-
lary is determined as a function of an applied
inert-gas pressure at constant furnace tem-
gerature. The theory of the method is developed,

ased on transport equations for a binary gas
mixture with gradients in both composition
and total pressure. Effects of interdiffusion,
viscous flow and thermal transport are con-
sidered, and the ranges for dominating influence
of each of these effects are delineated. It is shown
how computer fitting of the theoretical equation
to the experimental data advantageously
may be used to determine the equilibrium
vapour pressure. Applications to the determina-
tion of vapour diffusivity and viscosity also
are considered.

The study of vaporization processes forms an
important part of high-temperature chemical
research. In the present context, vaporization
is taken to include all processes whereby gas is
evolved from a system of condensed phases,
and vapour pressure determinations include
the measurement of equilibrium gas pressures
in any such system.

For the study of high-temperature systems,
the effusion method has been used extensively.
The effusion method, however, is based on
molecular flow and hence is limited to pres-
sures below ca. 10~* atm. The present paper
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discusses a method for the higher pressure
range (about 10~2 to 1 atm), equally applicable
at elevated temperatures because the vapour
pressure cell employed is comparable to an ef-
fusion cell in simplicity.

The chosen method originates from the
early work of Ruff et al.l»* The substance or
system to be investigated is contained in a cell
with a narrow capillary opening in the lid.
The cell is suspended from a balance into a
furnace in an inert-gas atmosphere which
initially is at a higher pressure than the equi-
librium vapour pressure of the system at the
furnace temperature. When the inert-gas pres-
sure is lowered (or the vapour pressure is in-
creased by increasing the temperature), the
vapour transport through the opening and
hence the rate of mass loss from the cell in-
crease. The enhanced flux particularly is marked
when the inert-gas pressure becomes smaller
than the equilibrium vapour pressure, and this
effect may be used to determine the vapour
pressure.

Ruff et al.®* and J. Fischer ? followed the
mass change of the cell at constant inert-gas
pressure and increasing temperature. From
their measurements it was found that a graph
of the mass versus time or temperature did not
exhibit a sharp break at the equilibrium vapour
pressure. The situation was not improved sub-
stantially by plotting instead the derivative
of mass with respect to time (i.e., the rate of
mass loss). W. Fischer e? al.* pointed out the
advantages of observing mass changes at con-
stant temperature and decreasing pressure step-
wise. However, a really sharp break in the
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curve for rate of mass loss versus pressure was
not found.

A subsequent theoretical treatment by
Wagner ® showed that the mentioned curves
cannot be expected to give sharp breaks. Wag-
ner gave recommendations as to the best way
of performing the experiments, but even so
the graphical method for determination of the
equilibrium pressure remains unreliable.

It is the purpose of the present paper (1) to
develop a consistent theory for the method,
(2) to discuss the resulting equation in terms
of various assumptions that lead to simpler
equations as limiting cases, and (3) to show
how a numerical rather than graphical proce-
dure may be used to determine the equilibrium
vapour pressure from the experimental ob-
servations.

THEORY

A schematic drawing of a suitable cell is
shown in Fig. 1. The opening has the shape
of a capillary with radius » and length I. The
cell is suspended inside a furnace at tempera-
ture 7'. The inert gas is denoted by subscript 1
and the vapour by subscript 2, while sub-
sceript £ denotes the furnace space and sub-
script i denotes the interior of the cell. The
symbol ¢ denotes concentration, x mol frac-
tion, and P pressure.

The following assumptions are made:

(1) The system is maintained at a steady
state, with a net transport 7, (mol/s) of vapour
through the capillary, while the net transport
of inert gas, #,=0. The flux J,=1,/(ar?).
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Fig. 1. Schematic diagram of the cell suspended
inside the furnace.
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(2) At the exit end of the capillary, the
vapour dissipates quickly to colder parts of
the furnace because of diffusion and convec-
tion, so that z,;=1, 2,4=0 and P;= Py, Py=0.

(3) The capillary is narrow in order to sup-
press the diffusive flux, and a significant pres-
sure drop may exist through the capillary
(P;>P;). The rate of mass transport is de-
pendent on the rate of viscous flow caused
by this pressure drop.

(4) The steady-state evaporation will cause
the temperature of the sample to be lower than
the observed furnace temperature 7', which
means that the vapour pressure P,; inside the
cell may be lower than the equilibrium vapour
pressure P,° at the temperature 7.

As regards assumption (3), Wagner® as-
sumed instead that the pressure remains uni-
form through the capillary. This assumption
limits the applicability of his result to certain
experimental conditions, which is the reason
why a new treatment appeared to be nec-
essary.

Transport equations for simul-
taneous diffusion and flow

The first task is to find the correct transport
equations for the case of a binary mixture of
ideal gases with simultaneous gradients in
composition and total pressure. This is a case
which appears to have received only occasional
attention in the literature. Texts on interdif-
fusion of gases quite commonly state Fick’s
first law in terms of gradients in concentration:

J1g= —Dj,(de,/dz) (a)*
Ja= — Dy, (de,/dz) (b)

where D,, and D,, are the coefficients of inter-
diffusion for the two gases, and z is the direc-
tion of the capillary axis.

An objection to these equations may be
raised. Let us introduce the mol fractions
Z,=0,/c, 23=_cy/c. Rewriting eqn. (a) gives:

d(cz,) dz de
Ja= "Dn"(Tzl— =-—Dy, (c?le + xl&) =

D dx
- (P +g) ©

* Letters are used here to identify equations
which should not be accepted without reservations.
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According to Chapman and Cowling ¢ diffusion
should be considered as a process caused by a
gradient in composition, while flow is a process
caused by a gradient in total pressure. It is
then apparent that the second term to the
right in eqn. (¢) does not belong in the expres-
sion for the diffusive flux, and therefore eqns.
(a) and (b) are not appropriate. The diffusive
flux should be expressed in terms of the deriv-
ative of the mol fraction.

The total fluxes J, and J, for the case of
gradients in both composition and total pres-
sure may be expressed by the general equa-
tions %8

dz

Ji= —D,,cal +cz,v (1)
dz

Jy= —D,IGE" +cxw (2)

In these equations, v is the mean molecular
velocity in the z direction. In order to derive
the correct expression for the velocity v, we
will consider first the equations for the special
case that the total pressure is uniform.

The case of uniform pressure. The original
experimental work of Graham showed that
the diffusive fluxes are inversely proportional
to the square root of the molecular masses, a
result that also may be deduced from a con-
sideration of momentum transfer.? Thus, at
uniform pressure Jg3+J,4. The transport equa-
tions for this case may be formulated in two
ways. One may use equations analogous to
eqns. (1) and (2) with »=0, using the symbols
D, and D, for the diffusivities to emphasize
that they are not equal:

J1a= — D c(dz,/dz) (3)
J3a= — Dyc(dw,/dz) (4)

The diffusivities are related through Graham’s
law of diffusion:

Jua D, my

Tu=D, =V m, =7 ®
in which m, and m, are the molecular masses,
and the symbol y has been introduced for
brevity of notation.

On the other hand, one may preserve the
concept of equal interdiffusion coefficients,
that is, D,,=D,,=D. In this case the net
transport may be expressed in terms of a
mean molecular velocity in the z direction,

designated vgq to indicate that this mean veloc-
ity arises from the process of diffusion alone, in
the absence of a pressure gradient. Thus, one has

dx

Jia= —Deg,* +oxwy (6)
dax,

Jaa= —De g +owyvq (7)

The velocity vq may be calculated by equating
the fluxes from eqns. (3) and (6), and from
eqns. (4) and (7), introducing also dz,/dz=
—duz,/dz, and substituting eqn. (5). This gives

D(l“)') dxl
Y= Yy (1—7) dz (8)

Introduction of eqn. (8) in eqns. (6) and (7)
yields the expressions for the diffusive fluxes
at uniform total pressure.

The case of gradients in both composition and
total pressure. A gradient in pressure causes
a viscous flow (assuming moderate pressure
gradients so that turbulence does not occur).
The viscous flow may be described in terms
of its mean linear velocity vy;.. For a straight,
cylindrical tube with radius r, this velocity is
given by

2  dP
Uvise= = 7 X &z (9)

where 7 is the viscosity of the gas mixture.

The fluxes caused by diffusion and by vis-
cous flow are additive.® This may be expressed
by the equations J,=J,9+J 1yiee; Ja=Jaa+
Javiss OF by the equivalent statement that
the velocity in eqns. (1) and (2) is the sum
of two separate contributions:
V=10q + Vyigc (10)
Substitution of eqn. (10) into eqgns. (1) and
(2), with v4 given from eqn. (8) and v, given
from eqn. (9), yields the expressions for the
fluxes caused by gradients in both composition
and total pressure. These equations need not
be written for the present purpose.

Application to the vapour
pressure method

In the experimental arrangement shown in
Fig. 1 at steady state, the net flux is equal to
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the mean molecular velocity multiplied by the
total concentration. That is,

Jy=cv (11)
With J,=0 in eqn. (1) we also have

dln 2,
cv=cD az (12)

From the kinetic theory of gases it is known
that the gas diffusivity is inversely proportional
to the total pressure, that is

DP=D’ (13)

where D’ is a constant at constant temperature.
With substitution of ¢ and J,, eqns. (11),
(12) and (13) give

RT#,

D’ dz (14)

dlnz,=
Integration between z=0 and z=1 yields after
some rearrangement:

213 =0xp(—n,/A4) (15)

The parameter A, which is constant for a given
experiment at constant temperature, is de-
fined by
nrtD’
A=
The total pressure P; inside the cell may be

expressed in terms of the partial pressures,
and we have

Py
Pi= T oxp(— /)

(16)

(17)

We now turn to eqn. (11) again. Introduction
of eqns. (8), (9) and (10) yields

nr:D’

7y d2= — PdP+ RT %

SRT n
1-y
—— dx
r+(1—yz,
According to the kinetic theory, the viscosity
of a gas is independent of pressure, while it is
expected to vary with the gas composition.
For the latter reason, the value of the viscosity
would be expected to vary along the capillary,
but we will approximate by the assumption
that » is a constant. Eqn. (18) then may be
integrated between z=0 and z=1, i.e., between
x,=2,;, as given by eqn. (15), and z,=1. This
gives
Acta Chem. Scand. A 31 (1977) No. 6
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nurd
%= T6RTiy (P"—Pf’) -
Aln[y+(1—7y) exp (—1,/4)] (19)

For brevity we define another parameter, con-
stant for a given experiment at constant tem-
perature:

nrd

16RTIn
Eqns. (17) and (20) introduced in eqn. (19)
give

: _ Pa ¥

=0l (o) ~ 4]
A In [y+(1—y) exp(—,/4)]

C= (20)

(21)

The effect of sample cooling

The evaporation requires heat, and the neces-
sary heat flux requires that the sample tem-
perature 7' is slightly lower than the constant
furnace temperature 7' (c¢f. assumption (4) in
the introduction). This effect was considered
by Wagner.® Assuming a heat transfer coef-
ficient K specific to the given experimental
arrangement, one has

K(T—Tg)=n,4H,

where 4H, is the molar heat of vaporization
of the sample.

The lowered sample temperature causes a
lowered vapour pressure in accordance with
the Clausius-Clapeyron equation:

P,y 4H, 1 4H,
53 = 7 (7 - 1) = - B -

s

Combination of these two equations yields

Py =Py’ exp (—n,/B) (22)

where the parameter B, a constant for a given
experiment at constant temperature, is given
by the expression

B=KRT?*[4H? (23)

Introducing eqn. (22) in eqn. (21) we get the
complete equation for the rate of mass trans-
port:

"2—0[(f’ ?;I;(( Zﬁ)) -pe]-

AIn [y+(1-y) exp (—#y/A)] (24)
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in which the parameter y is given by eqn. (5),
A by eqn. (16), C by eqn. (20), and B by eqn.
(23).

DISCUSSION

An experiment using a thermobalance yields
a record of the mass of the cell with sample
as a function of time. From the slope of the
recorded curve, the rate of mass loss is deter-
mined. The inert-gas pressure in the furnace
is read on a manometer, and is lowered step-
wise in the course of the experiment. Thus,
one obtains a set of corresponding values for
7y and P;, which may be considered as the
“knowns” in eqn. (24). For the present we will
consider also the parameter y=(M,/M,)} as
known, where M, and M, are the molecular
weights of the inert gas and of the vapour.
In a later section we will return to the question
of unknown molecular weight of the vapour.

The parameters 4, B and C are generally
unknown, as is also the vapour pressure P,°.
Thus, there are four unknowns to be deter-
mined. The problem may be handled by means
of a suitable, non-linear least-squares analysis
computer program which fits eqn. (24) to
the observed set of data. In this way one ob-
tains the ‘best’’ values for the parameters 4,
B and C, and for P,°. There is in principle no
objection to this procedure. It may happen,
however, that eqn. (24) may be fitted to a
given set of experimental data with almost
equal precision for widely different sets of
values for the two parameters B and C. This
feature of the equation will be made clear in
the discussion to follow. Hence, it is of interest
to consider simplifications of eqn. (24) by
removal of either B or C.

The course of an experiment roughly may be
divided in two parts. At the outset, P;> P,°,
and the mass transport occurs mainly by dif-
fusion of vapour through a higher pressure
of inert gas. The rate of mass loss is low and is
determined primarily by the value of the
parameter 4.

In the later stage of the experiment, P;< P,°,
and the rate of mass loss is high. It is deter-
mined mainly either by the resistance to vis-
cous flow through the capillary, or by the rate
of heat transfer to the sample, or by a combi-
nation of both effects. These two effects are

connected with the values of the' parameters
C and B, respectively. Each of the two limiting
cases will be discussed separately.

First case: Viscous flow is rate
determining

In this case it is assumed that the sample
temperature remains closely equal to the
furnace temperature 7', so that the vapour
pressure inside the cell effectively is maintained
at the value P,° throughout the experiment.
Formally this corresponds to an infinite heat
transfer coefficient K in eqn. (23). This means
an infinite value of B, which makes the ex-
ponential in the numerator of eqn. (24) go to
unity (that is, eqn. (21) is recovered, with
Py=Py).

For the purpose of the present discussion it
is convenient to express the equation in terms
of the ratio P;/P,°, which for brevity is denoted

by y:

o o 1 :
=0 (T=apr =) —¥]-
A In [y+ (1 —7p) exp(—1,/4)]

The behaviour of this equation will be il-
lustrated by graphs of 7, as a function of y.
For this purpose a set of arbitrary but reason-
able values is chosen for the physical quantities
as shown in Table 1, which also gives the cor-
responding values of the parameters 4, C, and
y. The chosen value of M, is equal to the atomic
weight of argon, while M, eorresponds roughly
to the atomic weight of a metal in the second
long period, and the value of the viscosity ap-
pears reasonable for a monoatomic metal vapour
at the elevated temperature 7'.

(25)

Table 1. Values of constants used for the cal-
culated curves in Fig. 2.

Parameters of eqn. (25),
calculated from the
chosen physical

Physical quantities,
values chosen

quantities
r =3x10%m
! =1x102m A=5x102ymols™?
T =2000 K
D' =DxP=30N s C=5x% 1078 ymol s1 Pa~2

7 =11x10*Nsm
M,=40
M,=100

y=1.68
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Fig. 2. Curves for the rate of mass loss %, as
a function of y, calculated from eqn. (25) with
the parameters given in Table 1. Curve I:
P,,=3333 Pa (=25 Torr); Curve II: P,°=
6666 Pa (=50 Torr); Curve y: Second term of
eqn. (25) plotted separately (closely identical
for both vapour pressure values).

Values of 7, have been calculated with these
parameter values for two different vapour
pressures, and the results are shown as curves
I and ITI in Fig. 2. In addition, the second term
of eqn. (25), the ¢y term”, is plotted separately
(bottom curve).

Several features of the graph, Fig. 2, should
be noted. First, it is seen that the ¢y term”
tends toward a small, constant value for y <1,
and that this term makes only a minor contri-
bution (in this case, a negative contribution)
to the calculated values of #,. Omission of this
term from the equation would move the cal-
culated curves slightly upwards, with hardly
any perceptible change in the shape of the
curves. This means that the method may be
used also without a knowledge of the molec-
ular weight of the vapour. Preferably, one may
estimate the molecular weight of the vapour
and include the ““y term’” on this basis.
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It is noted from Fig. 2 also that the rate
of mass loss in the diffusion range (y > 1) tends
toward the same value for both curves, in-
dependent of the vapour pressure, owing to
the fact that diffusivity is inversely propor-
tional to pressure. In the viscous flow range
(y<1), on the other hand, the rate of mass
loss is approximately proportional to the
square of the vapour pressure, which accounts
for the large difference in the two curves.

The calculated curves in Fig. 2 have been
drawn to y=0 (¢.e., P;=0) for the sake of il-
lustration. It should be noted, however, that
the theoretical treatment loses validity for P
less than about 10 Torr, hence the curves are
drawn with broken lines below the correspond-
ing y values.

Except for the factor 1/P,° along the ab-
scissa, the curves in Fig. 2 are identical to the
curves one would expect to obtain for 7, versus
P; from an experiment for a system with the
chosen parameter values. It is seen that graph-
ical, linear extrapolation would appear un-
reliable since the theoretical curves do not
exhibit any extended range of linearity.

Second case: Heat transfer is
rate determining

In this case it is assumed that the mass trans-
port occurs by diffusion, with no (or negligible)
pressure drop through the capillary. Formally
it corresponds to zero viscosity, which means
that the parameter C is infinite [¢f. eqn. (20)].
It is noted that the first term inside the paren-
thesis to the left in eqn. (24) is simply P;?, and
that for no pressure drop, P;= P, so that the
two terms in the parenthesis are equal. This
yields directly the equation for this case:

exp(—n,/B)

P= P4 T oxp(— il ) z0)

Eqn. (26) does not appear in Wagner’s publica-
tion.’ In handling the equations he introduced
certain simplifying approximations, and ar-
rived at the equation

Py=P,° (1+exp(—1iy/A)—1/B) (27)
A numerical check shows that these two equa-
tions give closely identical values of 7, for
y=P;P,’<1, while the results deviate for
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Fig. 3. Comparison of the curves for 7%, as a
function of y, calculated from eqn. (26) (thick
lines) and from eqn. (25) (thin lines, identical
to those shown in Fig. 2). Curve I: P,°=3333
Pa, B=0.75 ymol s7%; Curve II: P,°= 6666 Pa,
B=3.50 ymol s,

y>1. Eqn. (26) may be considered the “cor-
rected Wagner equation” and will be discussed
here.

We may investigate to what extent eqn.
(26) is able to reproduce the curves calculated
from eqn. (25) as shown in Fig. 2. The same
value of the parameter A is used. As regards
pressures, it is seen that eqn. (26) predicts
dependence of #, on the relative pressure y
only. Two different values of B thus are needed
to match the two curves. It is seen in Fig. 3
that by the use of the values 0.75 and 3.50
umol 871, the two curves of Fig. 2 are reproduced
by eqn. (26) down to y values of about 0.7.

At lower y values, eqn. (26) predicts a steady
increase in 7,, and in fact predicts that %, goes
toward infinity when P; is reduced to zero.
This is clearly impossible, and any real, ex-
perimental curve would have to bend toward
a finite value of 7, due to the restriction im-

posed by the resistance to viscous flow in the
capillary.

On the other hand, for y values down to
about 0.7, it appears that both eqns. (25) and
(26) may be fitted to a given set of experimental
data with almost equal precision. A possible
consequence is that computer fitting of the
complete eqn. (24) may give trouble, because
of the relative importance of the two param-
eters B and C for a given set of experimental
data. It is thus of considerable interest to at-
tempt a delineation of the ranges of tempera-
ture efc., in which each of the two simplified
equations (25) and (26) may be considered
valid.

Ranges of validity for the two
limiting cases

For this purpose the two equations may be
further simplified for y<1. In eqn. (25) the
“y term” will be relatively unimportant in this
range and may be omitted (¢f. Fig. 2). Further-
more, for y<1 we have #,/4>1 and thus
oxp(—n,y/A)~0. With these approximations
eqn. (25) reduces to

#iy=C(Py°)*(1 -9 (28)
Similarly, eqn. (26) is reduced to
#y=—Blny (29)

A decision between the two models may be
reached by comparison of the values of 7,
predicted by these two equations for the same
experimental conditions. By analogy with
chemical kinetics, heat transfer and viscous
flow in this case may be considered as con-
secutive processes, and whichever gives the
lower value of 7, represents the rate-deter-
mining step.

In order to reach a clear-cut decision we set
the ratio of the two predicted values equal to
a factor f:

~BIny
oIy =
The parameter B is proportional to the heat
transfer coefficient K, which may be found by
assuming heat transfer by radiation:

K(T —T,)=seo(T*— T,!) =~ 4seaT*(T —Ty)

(30)

(31)

in which ¢ is the emissivity, T’y is the tem-
perature, s is the area of the cell surface,

Acta Chem. Scand. A 31 (1977) No. 6




and ¢ is the Stefan-Boltzmann radiation con-
stant. One may, somewhat arbitrarily, as-
sume a value of 0.5 for the emissivity (alter-
natively assuming a somewhat higher emis-
sivity combined with a finite resistance to heat
flow through the cell wall and the sample).
This gives from eqn. (31):

K =230¢T* (32)

An expression for the enthalpy of vaporiza-
tion in eqn. (23) is obtained by noting that
the molar entropy of vaporization at the boil-
ing point is approximately the same for dif-
ferent substances (Trouton’s rule). This may
be applied also to a “boiling point” at, e.g.,
50 Torr. Thus we have

AH,=T 48,

Introduction of eqns. (20) and (23) in (30),
with the substitutions given by eqns. (32) and
(33), yields after some rearrangement

-1 1
Iny X

(33)

T =4S
" = 32Re *

(LY (34)

sin *

It is chosen to effect a numerical comparison
at a value of y = 0.80 (¢f. Fig. 3). For the entropy
of vaporization is assumed 4S,=130 J K™
molt, The viscosity of gases varies with molec-
ular mass, collision diameter, and temperature;
we can do nothing better than to assume a con-
stant value #=5x10"° N s m™ (roughly cor-
responding to the viscosity of mercury vapour
at 200—300 °C). We assume a cylindrical cell
of 2 em outside diameter and 3 cm height,
this gives the surface area s§=2.5x10"% m?
The length of the capillary is assumed I=
1.0 x 10 m. With the radiation constant o=
5.67x 10 W m—® K, and at a chosen pres-
sure P,°=6666 Pa (=50 Torr) eqn. (34) gives

Tjr=2.2x 10~ f1/A K m (35)

Eqn. (35) indicates a direct proportionality be-
tween the capillary radius and the temperature
required for the change from heat transfer
to viscous flow as the main restraint for the
rate of mass transport. It is noted also that
the parameters s, ! and # enter as fourth root
and P,° as square root in the expression for
T/r, which means that eqn. (34) is fairly in-
sensitive to moderate changes in the values
of these parameters.
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The factor f was introduced in eqn. (30)
with the intention that it may be varied over
suitable powers of ten. Choosing a value of
the capillary radius = 0.3 mm for illustration,
one arrives at the following results:

f =01 1 10

T=371 K 660 K 1173 K

These results may be expressed as follows: At
temperatures below 100 °C, heat transfer ac-
counts for more than 9/10 of the restraints to
mass loss. In the range 100 to 900 °C heat
transfer and viscous flow are both of importance
in determining the rate of mass loss, the two
effects becoming of equal importance at about

. 400 °C. Above 900 °C viscous flow represents

more than 9/10 of the restraints to mass loss.

Thus, the Wagner model of heat transfer,
expressed by eqn. (26), will be strictly valid
only at temperatures near room temperature.
The viscous flow model, expressed by eqn.
(25), will be valid at temperatures above 900
°C. These conclusions are reasonable, since the
efficiency of the heat transfer increases rapidly
with increasing temperature. Viscosity, on the
other hand, increases with temperature for
any gas or vapour, which means that the
resistance to viscous flow will be less at low
temperatures.

The above conclusions are believed to be of
fairly general validity for samples with medium
and high thermal conductivity. In particular
a fine-grained and loosely packed solid powdered
sample may have very low thermal conductiv-
ity, which, however, may be enhanced by com-
paction of the powder and subdivision of the
compact to coarser pieces. Still it appears
advisable in such cases to regard the above
conclusions critically, and to perform a similar
evaluation from eqn. (30) onwards with the use
of numerical values proper to the case at hand,
if it is desired to assess the relative importance
of heat transfer and viscous flow resistance.

ON THE PRACTICAL APPLICATION
OF THE METHOD

Our applications of the method to date in-
clude determinations of vapour pressures of
various molten salt systems at temperatures
around 600 to 1200 °C. The relative merits of
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the two simplified eqns. (25) and (26) have
been tested by fitting each of these equations
to the same set of experimental data, using
a non-linear least-squares analysis computer
program.’® It is generally found that the two
equations yield nearly the same values for the
vapour pressure. This is also to be expected
from the proximity of the calculated curves
in Fig. 3, as pointed out above. As a conse-
quence, comparison of vapour pressure values
obtained from each of the two limiting equa-
tions generally will not give information as to
which equation is “valid” for the case in hand.
Furthermore, when the experimental data
have been obtained in a range where resistance
to heat transfer and resistance to viscous flow
are simultaneously of importance in determining
the rate of mass transport, the values obtained
separately from eqns. (26) and (25) for the
parameters B and C may have little or no
physical significance.

From the considerations above, resistance
to heat transfer should be particularly signif-
icant in experiments at low temperatures. For
this effect to be dominating, temperature
would have to be so low as to be of little interest
in high-temperature chemistry, but effects in
the expected direction have been observed in
experiments with volatile molecules such as
NaAlCl,, etc., where the size of the molecule
contributes to a low viscosity. On the other
hand, resistance to viscous flow should dominate
in measurements at high temperatures, in par-
ticular for monoatomic metal vapours where
the small collision diameter gives a relatively
high vapour viscosity. This has been confirmed
by determinations of the vapour pressure of
silver in the temperature range 1580 to 1860
°C; the experimental curves obtained in this
case are very similar to those shown in Fig. 2.
(The physical data given in Table 1 were in
fact chosen with the silver experiments in
mind.)

The most accurate results for the vapour
pressures in general are obtained by computer
fitting of the complete eqn. (24). This is achieved
by use of a more sophisticated computer pro-
gram,!' which then may yield physically ac-
ceptable values for the parameters B and C.
The viscosity of the vapour in principle may
be determined from the value of C when the
exact dimensions of the capillary are known,

¢f. eqn. (20). The viscosity value thus obtained,
however, will not be very reliable in the general
case, since even the best of computer programs
will not be able to assess the truly correct
values of B and C when both effects are simul-
taneously of importance. Likewise the interdif-
fusion coefficient of the vapour and the inert
gas may be determined from the value of the
parameter A, but again there are sources of
error to be considered. Further discussion of
the method, including its application to the
determination of viscosities and diffusivities,
the effect of large difference in molecular
weights, and the influence of porous cell ma-
terials, will be presented in subsequent com-
munications in conjunction with experimental
data.
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