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The possibility of homogeneous integration
of the internal energy () is considered in
connection with a discussion of the proper
form of the Gibbs-Duhem equation in thermo-
dynamic systems. It is found that the Gibbs-
Duhem equation solely involves variations
in <“internal” Brensted-potentials (negative
pressure, temperature, chemical potentials,
polarising electric or magnetic fields or inter-
facial tensions) and not variations in “external’’
Bronsted-potentials (electric or gravitational
potentials). Equilibrium conditions and over-
all force balances are established for isothermal
systems.

A subdivision of the internal energy (X&) of
a system into Gibbsian internal energy (U),
potential energy (PE) and macroscopic kinetic
energy (KE) 18 considered. The signs of the
corresponding time derivatives are seen as
important clues to the nature of various types
of energy transformations.

Attempts to use equilibrium thermodynamics
to describe the partial equilibrium of matter
in temperature fields are doomed to failure,
since it can be shown on a purely phenomeno-
logical basis that ‘‘entropies of transport’ have
nothing to do with partial molar entropies.

The previous papers in the present series have
been concerned with the relation between
Bronstedian and Gibbsian energetics and the
definition and properties of the exergy! and
with the connection between exergy loss and
entropy production.? In this paper we shall
take up certain fundamental questions regard-
ing the proper form of the Gibbs-Duhem
equation in thermodynamic systems submitted
to external fields, a subject which has often
led to confusion in the past. We shall make the
important distinction between internal Bron-
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sted-potentials (e.g., —p,T,u;) giving rise to
Gibbsian internal energy (U) and external
potentials (electric and gravitational potentials)
giving rise to potential energy (PE). The
appropriate equilibrium conditions for matter
in isothermal fields are discussed and it is
proposed that the sign of the time derivatives
dU/d¢t and dPE/dt together with the sign of
the time derivative of the macroscopic kinetic
energy (KE) give important information about
the physical nature behind the energy trans-
formations taking place in a system.

In the so-called ‘quasi-thermostatic’® meth-
ods, equilibrium thermodynamics is used for
describing the partial equilibrium of matter in
temperature gradients. We shall see that such
methods fail to yield a description of the Soret-
effect where a composition gradient evolves
as a consequence of a difference in temperature.
A lot of further evidence is given which shows
that ¢‘entropies of transport’” are purely
dynamical quantities which have nothing to
do with partial molar entropies. Therefore
an entirely new principle of non-equilibrium
thermodynamics is called for in order to
describe, e.g., the Thomson relation between
thermo-electromotoric force and Peltier-entropy
transfer.

INTERNAL ENERGY AND GIBBS-DUHEM
EQUATION

In the first paper in this series we defined
the general internal energy of a thermodynamic
system to be
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K
B=3 f PdK, (1)
iJo
If the system is not discrete, but continuous,
we may consider a small, fixed region in
Cartesian space Jf2 with an energy given by

8K,
SE=S f P,oK, (2)
iJo

In general, the values of the potentials at a
certain position (z,y,2) will be functions of
the concentrations cx of the quantities at
(z,y,2) or functionals of the concentration
distributions. For example, the electric potential
v is linked to the charge density (c,) and the
absolute permittivity through the Poisson
equation

C

vy=— @)

(for application of this equation in problems
of electrokinetics and electrolyte diffusion
see Refs. 3 and 4). The solution to (3) for a
given charge distribution is®

Viry)= 1 f cq(xt,yt,2t) dartdyida?
V8 =

% 7 Q'\/(?—xl)l.i.(y_yl)l_'_(z_zl)’

(4)

showing that y is a functional of c,(z,y,2).
For the total internal energy in the region
£ occupied by our system, we have

E-——'chEdQE Qg—gd():fg{z_/;KPch}dQ
(5)

where cg, is the concentration of internal energy.
The last expression is obtained using (2) and
the definition of concentration of a given
quantity K

oK

Cg= m (6)

In case of the quantity being the volume
(K=V) we have to be aware of not to inter-
change the meanings of the element of fixed
volume in Cartesian space (6£2) and the element
of transported Brensted-volume (6V). Filling
up, e.g., & jar with water at constant » means
that the concentration of Brensted-volume

added to the water goes from 0 to 1. From
eqn. (5) we obtain

‘k
GE=zf0 PdGK (7)

and

deg= > Pdeg (8)

If — and only if — it is possible to find an
integration path for the internal energy where
the potentials remain unaltered we have

cg=J {Pf:x ch} =3 Pcyg (9)

By differentiation of (9) and comparison with
(8) we get the general form of Gibbs-Duhem’s
equation

SexdP=0 (10)

Now, in the thermodynamic phases considered
by Gibbs (Ref. 29, pp. 55—349) the effect of
gravity and electric fields were not considered
in any great detail (see pp. 144—150 and
pp. 331—333, however). Such a phase char-
acterized by (V,S,n;) and (—p, T, u;) may be
built up isothermally and isobarically and with
fixed chemical potentials by adding volume,
entropy and moles of different components in
the same constant proportions as in the final
phase, since the composition will not change
during the process of loading. Here we have
neglected the contribution to internal energy
from the interfacial tension at the boundaries
of the considered phase. Thus, we have for
the Gibbs-Duhem equation in that particular
case

— p+c50T + Jc; ;=0 (11)

We may even enlarge our list of quantities
with the dielectric polarisation g and magnetisa-
tion g, if they can be added at constant
conjugated potentials, i.e. constant polarising
fields & and z¢. This will be the case, when the
molar polarisation and magnetisation are unique
functions of & and ¢ at constant p, T and
composition (e.g. a Langevin type of rela-
tionship ¢). In such cases we have the Gibbs-
Duhem equation

Vép—8oT + Sn,du;+ PoE + MOH =0 (12)
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which may be given in terms of concentrations,
if desired. Many multi-phase systems may also
be built up at constant potentials. Now we
have as further quantities internal interfacial
area with associated excess surface concentra-
tions and surface entropy, but these surface
quantities may often be added in constant
proportions to the bulk quantities in such
a way that the interfacial tensions (¢) and the
surface chemical potentials remain constant.
In that way we obtain general Gibbs-Duhem
equations such as

2{V*op™ — 8*6T* + Zni oy}
[ i

+ S(4%56% — 85T + ST A% 5428y =0 (13)
of i

Summation over Greek indices represents sum-
mation over phases and double Greek indices
over interfaces between phases. Since each bulk
phase satisfies separately its own Gibbs-Duhem
eqn. (11) we have for the af-interface

AP 50" — 8 5T 4 ST A% 5P =0 (14)
F] .

where S% is the excess interfacial entropy and
I'™ the excess interfacial concentration of the
i’th component. Important relations are derived
from eqn. (14), e.g. the Gibbs adsorption
equation for determining interfacial excess
concentrations of surfactants experimentally
from interfacial tension/concentration rela-
tionships.?

Passing now to systems involving external
fields (electric or gravitational) one might be
tempted to generalise the Gibbs-Duhem equa-
tion to involve all variations in potentials.
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It is therefore a most intriguing question
whether or not the expression

—VP+csVT + 26V +cqVy + oV

equals to zero in continuous media subjected
to external gravitational or electric fields (for
simplicity we now exclude any dielectric and
magnetic polarization). La Mer, Foss and Reiss
have claimed such a general Gibbs-Duhem
equation to be fulfilled.®* However, in a paper
(edited by J. Koefoed after the death of Bren-
sted) Brensted has presented ® a subtle discus-
sion of this matter, which does not confirm
the conclusion of La Mer, Foss and Reiss.
His arguments become somewhat obscured by
the fact that he considers only a single chemical
component in equilibrium in a gravitational
field, however. Therefore, here we treat the
general case of multi-component equilibrium
in gravitational and electric fields.

It is easily seen that if the expression (15)
is equal to zero and the charge density c, or
the electric field strength — Yy is equal to zero,
there can be no presrure gradients in an isotherm
system subjected to gravity forces when the
gradients in electro-gravi-chemical potentials
vanish

Vii=V(u+zlp+Md)=0

Eqgn. (16) is the expression for isothermal
equilibrium of matter in gravitational and
electric fields, and the same equation is quoted
by La Mer, Foss and Reiss. Actually it is just
the work principle of Brensted applied on the
virtual displacement of one mol of component
i in Cartesian space. We know, however, that
there certainly are pressure gradients in gravita-

(15)

(16)

(a) (b)
P,+8p,
® P, T s 6
""""" S n T
2 8V\ lss/snk . 160, \ ( k
vy p,+6p,
P, P, T T
5p.=6T= ka=0 8¢|¥0 6¢i=6T=0 Gp‘ +0 6ph*0

Fig. 1. Diffeorent modes of charging a gravity field with matter.
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tional systems at equilibrium (hydrostatic
pressure), and this can only mean that the
“general”’ Gibbs-Duhem equation is not correct.

Since the proofs of the various Gibbs-Duhem
equations rely only on the possibility of homo-
geneous integration of the internal energy into
the expression given by eqn. (9), one might
wonder, why it is not possible to choose an
integration path, where all potentials remain
constant, when we change our system with
the various quantities. The difficulty is il-
lustrated in Fig. 1. For simplicity we consider
a discrete system with two containers mounted
at different heights in a gravity field. One can
choose either to supply Brensted-volume,
entropy and moles of the components together
with the molecular masses at fixed temperature
and pressure at each position, or to supply the
moles, the masses and the entropy at equal
volumes of the containers. In the first case the
volumes in the containers change during the
process of filling up the containers and thereby
the center of gravity, 7.e. ¢, changes in each
case, whereas T', p, and the chemical potentials
remain constant. In the second case the ¢’s are
constant, but p and the u’s will vary if d7T
is chosen to be zero. Thus, it is not possible
to choose an integration path with ¢, y, T, p,
and the u’s being simultaneously constants.
Therefore, a Gibbs-Duhem equation can only
be established for potentials and quantities
involved in the traditional (Gibbsian) internal
energy which we may designate by the usual
symbol U. We have

cy=—p+Tes+ Spc; (17a)
—Vp+esVI+ 20,Vu;=0 (17b)

In isothermal external fields Y7'=0, and when
this is introduced in the Gibbs-Duhem eqn.
(17b) together with the equilibrium conditions
(16) for each component, we obtain the over-
all force balance on an element of volume

—Vp=cuVd+c,Vy

The Gibbsian internal energy U will only
be a part of the general internal energy E of
a thermodynamic system defined by eqn. (1).
Especially we notice — by comparison with
the table of quantities and conjugated potentials
given in the first paper in this series! — that
we have neither included electric charge and

(18)

heavy mass, nor inertial mass and the con-
jugated “velocity potential’’ v2/2 where v is the
velocity of the local center of mass. The corre-
sponding contribution to the integral (5) give
rise to potential energy

PE—f d.Q—f {/‘qwd i d }d!)

= = +f

QCPE QYo “ 0 ddew
(19)

and macroscopic kinetic energy (e.g. hydro-
dynamic motion)

wo= [ (oo [ 1], vacww)aa

(20)

The last integral in eqn. (20) corresponds to
a bipartition of the ‘kinetic work’ which is
often more convenient than P =+%/2 and K =M.
Here K=Myv, ¢.e. the linear momentum is
chosen as a ‘vectorial quantity’’. The con-
jugated ‘vectorial potential”’ becomes then
the velocity itself. The total internal energy
is now the sum of the Gibbsian energy, the
potential energy and the kinetic energy

E=U+PE+KE (21)

In an isolated thermodynamiec system d#/d¢=0,
but that does not mean, obviously, that the
three time derivatives are separately zero.
On the contrary, the signs of dU/d¢, dPE/dt
and dKE/dt are important clues to the under-
standing of the nature of the physical processes
going on in the system. Some examples would
be illuminating:

1. dU=dPE =dKE =0. Internal, irreversible
processes such as “heat”’ conduction, diffusion
processes and chemical reactions.

2. dU > 0,dPE <0, dKE =0. “Joule heating”
of an electrical resistance.

3. dU <0, dPE >0, dKE =0. Thermoelectric
phenomena where electrons (or ¢positive holes’’)
are taken against the gradient of their electro-
chemical potential by a flux of entropy.

4. dU >0,dPE =0, dKE <0. Viscous dissipa-
tion of hydrodynamic motion.

5. dU=0, dPE+0, dKE=+0. Frictionless
Bernoulli (Euler) motion of an incompressible
fluid.

6. dU<0, dPE=0, dKE > 0. Formation of
spontaneous convection cells (‘‘dissipative struc-
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tures” in the terminology of Glansdorff and
Prigogine ) at liquid-liquid boundaries due
to chemical reactions on the interface -3 or
due to mass transfer.!4?

EQUILIBRIUM OF MATTER IN TEMPERA-
TURE GRADIENTS

If we also have gradients of temperature
it becomes necessary to modify some of the
statements in the previous section concerning
the equilibrium of matter. The equilibrium is
now a partial equilibrium, since the system
in toto is not in equilibrium because of the
unbalanced flow of entropy (see Ref. 2). How-
ever, we may imagine that this entropy has
no influence on the quasi-equilibrium condition
for component i. Instead of (16) we now write

Vi +8VT +2FVy+ MY$=0 (22)

according to Brensted’s work principle, since
we move partial molar entropy (S;) with one
mol of component i as well ag charge zF and
mass M;. In the isothermal case this transport
is neutral and need not be included in the
work principle. Weighting each of the eqns. (22)
with ¢; and summing we obtain

JeiVu+esVT +cVy+eyVg=0

and introducing the Gibbs-Duhem eqn. (17b)
we recover the overall force balance on an
element of volume (18).

Using eqn. (22) to describe equilibrium of
conducting electrons in a temperature gradient
in a metallic conductor, we have

(23)

dpe—Fdy+ 8, dT =dfi +8.dT=0 (24)

Making a junction between two different con-
ductors — (1) and (2) — with the junction
elevated to the temperature T'+ 4T, we obtain
for the thermo-electromotoric force between
the two ends of temperature 7'

~ (2) _ ~ (1)
emf(1-»2)= — [ES—FL]

T44T
1 S 1) _g
-7 |f, Go-5our

since the electrochemical potentials of the
electron in the two metals are equal at the
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hot junction. Under the assumption of constant
partial molar entropy of the electron we obtain
approximately

1

emf (1 » 2) -5

F (Se(l) - S’e(’))AT

(26)
On the other hand, in an experiment where
positive current I, (C/s) is directed from con-
ductor 1 to conductor 2 and the junctions are
kept at constant temperatures 7' and 7'+ dT by
means of thermostats, we will have transfer
of the following Peltier-entropy per unit time
to the “hot’’ thermostat

dSpeitier

3 (27)

= I_Fq (Ee(z) _Ee(l))
(due to conservation of entropy at the hot
junction, the difference between the entropy
carried along with the electrons has to be
compensated by an entropy exchange with
the hot thermostat). Thus, the present ‘“quasi-
thermostatic’’ theory predicts correctly the
required relationship between thermo-emf and
Peltier heat found by Thomson,'®!® since the
partial molar entropy of the electron is common
for the two experiments.

Thomson himself expressed doubt, however,
whether it was correct to use equilibrium
thermodynamics to describe virtual displace-
ments of the electron in cases with a ‘“heat”
flow. Niels Bohr was probably one of the first
to hint that the reversibility of the microscopic
Hamiltonian equations of motion was the real
physical reason behind Thomson’s relations
(see Ref. 20, pp. 22, 71— 175). As is well known,
the symmetry to time reversal of time correla-
tion functions of fluctuations in different
physical variables was later made a cornerstone
in Lars Onsager’s proof of the reciprocal rela-
tions between transport coefficients,? on which
proof the later developed framework of irrevers-.
ible thermodynamics is resting.??

It is also possible on a phenomenological basis,
however, to prove that the quasi-equilibrium
condition (22) cannot be correct. For example,
Koefoed 2 has once pointed to the fact that
experimentally one sometimes finds a definite
thermo-emf between two identical single crystals
with different orientation. But the partial
molar entropy of the electron in a crystal cannot
be dependent of orientation, and the emf
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should be 0 following (26), if (22) were correct.
As another example we may take the thermo-
diffusion effect discovered by Ludwig ** and
Soret.? It is an experimental fact that sub-
stances in solution in a column with a tempera-
ture gradient has a tendency to concentrate
somewhat in one end of the column (pre-
dominantly the cooler). When we consider a
two component system, and thermodiffusion
equilibrium has been reached, we have for an
uncharged solute (1) according to (22) in a one
dimensional T-profile

du, +8,dT=0

For systems with no pressure gradients we
have dy1=—§,dT+(3;¢,/6X)dX where X is
the mol fraction of component 1, since there is
only a single composition variable in a two
component system. Combining the two equa-
tions we obtain

(010X )7,pAX = 0

which means that dX=0. Thus, assumption
of the equilibrium condition (22) for equilibrium
of matter under non-isothermal conditions will
exclude the possibility of any Soret-effect!
We have to replace (22) by eqn. (28)

Vi +8,*VT +2,FVy+ MV$=0

where S* is the molar “entropy of transport’.
In anisotropic media we must even take S;*
to be dependent on the chosen direction in
space. Since the Gibbs-Duhem eqn. (17b) and
the over-all balance of forces (18) still have to
be fulfilled, eqn. (23) must still be correct.
Weighting each of the eqns. (28) with the con-
centration ¢; and summing, we notice that the
following restriction for the entropies of trans-
port has to be respected

SeSi*=cs

(28)

(29)

With the new equilibrium condition (28) we
have for the Soret-effect in a two component
solution

(&) -hesr
AT Jsoret ~ (O11/0X)1,p
But the entropy of transport is now a purely
dynamical quantity without any basis in
equilibrium thermodynamics. There is no
guarantee that S;* will be identical under

(30)

different experimental conditions. Therefore,
the relation between thermo-emf and Peltier-
effect must be due to an entirely new principle
on non-equilibrium thermodynamics, which
may be called ‘‘the fourth law of thermodyna-
mics” (expressed for example in Onsager’s
reciprocal relations).

The measurements of Denbigh and Rau-
mann 228 of the thermo-osmotic pressure
differences over rubber membranes exerted
by H, and CO,; constitute still another proof
that entropies of transport have nothing to do
with partial molar entropies. Using (28) for the
description of the quasi-equilibrium of the gas
dissolved in the rubber membrane we obtain
under the assumption of approximately con-
stant S* for the gas through the membrane
(small AT and 4p)

A/’gas in membrane +8*4T =0 (31)

The difference in chemical potential for the
gas is taken between localities just inside
the two membrane boundaries. Due to local
equilibrium the chemical potentials just outside
the membrane must be the same. For small
AT and 4p we have

Apigas = _ggasAT‘i' Vgasdp (32)
and combining (31) and (32) we have for the
thermo-osmotic pressure
4p Sgas—S*
AT /thermo—osmosis &= ————
Vgas

(33)

If §* were simply the partial molar entropy
of the gas dissolved in rubber, eqn. (33) would
be nothing more than a simple Clapeyron
equation for elevation of the vapor pressure
due to an elevation of temperature. The
measurements of Denbigh and Raumann show,
however, that not only is S* entirely different
from the partial molar entropy of the gases dis-
solved in rubber, but the suspected ‘‘entropy of
vaporisation” §gas — 8* calculated from thermo-
osmotic data has even different signs for the
gases H, and CO,!

CONCLUSION

Different types of Gibbs-Duhem equations
have been investigated. Of particular im-
portance is the statement that electrical and
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gravitational potential variations in space must
not be included in the Gibbs-Duhem equation.

A division of internal energy of a general
thermodynamic system E into Gibbsian internal
energy U, potential energy PE and macros-
copic kinetic energy KF is made. The signs
of dU/dt, dPE/dt and dKE/dt constitute im-
portant clues to the physical mechanisms in-
volved in the energy transformations.

The quasi-thermostatic methods of calcula-
tion of equilibrium of matter in temperature
fields are not correct even on a phenomeno-
logical basis. The entropy of transport has
nothing to do with the partial molar entropy.
It is a purely dynamical quantity, and quantita-
tive relationships between different experiments
such as thermo-emf and Peltier-effect are due
to an entirely new principle of non-equilibrium
thermodynamics, as earlier shown by statistical
arguments by Bohr and Onsager. A phenomeno-
logical treatment of transport-processes contain-
ing Onsager’s reciprocal relations as & special
case will be presented in a forthcoming paper.
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