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The relationship between structural variables
and the stability of complex hydrides ABH,D,_,,
(A =alkaline atom; B= the Group III B atom;
n=number of hydrogen atoms and D non-
hydride substituents) is investigated by means
of the pattern recognition (PR) method SIMCA.

A learning set consisting of 95 stable and 20
unstable complexes was characterized by 49
structural variables. SIMCA sorted out 28 of
these as relevant for the classification of the
complexes as stable or unstable.

The resulting relations between these 28
variables for the two classes makes possible
a qualitative interpretation of which factors
influence the stability of the complexes. The
method classifies 75 9, of the complexes cor-
rectly which is encouraging considering the
crudeness of the model.

For inorganic as well as organic chemists, the
complex hydrides ABH,D,, (A=alkaline
metal: B=the metal of the Group III B;
n=the number of hydride atoms and D=a
substituent other than hydride) represent an
interesting and synthetically important group
of chemical compounds. Theoretically, the
combination of A, B, n and D could give an
extremely high number of compounds due to
practically unlimited set of the possible sub-
stituents D. Nevertheless, numerous empirical
facts (see Ref. 1 and references therein) have
shown that only some of the complex hydrides
are stable, whereas the others exhibit a sig-
nificant instability.

In this paper, we design a simplified model

for the stability of complex hydrides ABH,D,_,,
(n=1—4) based on structural data® for A, B
and D. For the quantitative interpretation of
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these multivariate data we used the SIMCA
method, one of the recent pattern recognition
(PR) techniques.

PATTERN RECOGNITION

The search for and use of regularities in
empirical data has always been of great im-
portance in chemistry. Quantitative methods
specifically designed to detect regularities in
multivariate data are finding increased use in
chemistry under the name of pattern recognition
(PR). For reviews, see Kowalski,®* Jurs and
Isenhour,® Redl, Cramer and Berkoff ¢ and
others.” The principles of PR can be described
as follows:

1. Formulate the problem as a classification
problem where objects are to be assigned to
one of several classes on the basis of multi-
variate data observed on these objects (see
Fig. 1). In the present application, we wish to
classify complex hydrides (the objects) of the
general formula ABH,D, ,, as “stable” (class 1)
or ‘“unstable’ (class 2). Hence, the number of
classes, @, is two.

2. The values of M variables are observed or

.otherwise defined for a number of objects

“known” to belong to the different classes.
These objects are called the training set or the
reference set.

In the present example, each complex
hydride is characterised by 49 variables (see
below). The training set consists of 95 com-
plexes “known’’ to be stable and 20 complexes
“known’’ to be unstable.
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Fig. 1. Data used in the analysis of data by pattern recognition methodology.

3. Observe or define the values of the same
variables for objects of unknown class assign-
ment (see Fig. 1). These data constitute the
test set. In the present application, this test
set consists of the data for 109 complex hydrides
for which information about the stability is
rather incomplete or entirely lacking.

Class !

4. Find the “common pattern” in each class
by analysing the training set by means of
a mathematical procedure, We have used the
SIMCA method which is specifically designed
for chemical pattern recognition.®?®

5. Compare the objects in the test set with
the common pattern of each class using the
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Fig. 2. The principle of pattern recognition as a methodology of assigning an object to the correct
class on the basis of the values of M variables measured on the object.
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mathematical procedure as a means of com-
parison. Each object is assigned to the class
which shows the greatest similarity with the
data of the object (Fig. 2).

Usually, PR methods are used to analyse
empirical data such as spectra. In the present
context, however, we are interested whether
structural information can be used to predict
the stability of complex hydrides. The variables
used to characterise each hydride are therefore
taken to be “theoretical’’, such as the electro-
negativity of atom A and the atomic weight of
atom B. This use of PR methods to investigate
structure reactivity relations has been applied
to some extent to problems in biochemistry
and pharmacology ® but, to our knowledge, not
in inorganic chemistry.

THE SIMCA METHOD

The PR method used here is called SIMCA
(Simple Modelling Class Analogy). The method
is based on the fact that data y;;@ (see Fig. 1)
observed on a group of similar objects (class q)
can, provided that a few continuity assumptions
are fullfilled, be described by the principal
components model #°

4
Y9 =a 2+ 21 Bia@ 0,49 + £/ (1)
a=

In eqn. (1), the parameters « 9, 8,9 and
0,47 are determined as to make the sum of
squared deviations ;@ minimal. The
mathematical method to make this determina-
tion for a given matrix of data (y;;¢)) is known
under the name principal components analysis.

The PR method based on eqn. (1) has the
following steps:

A. Given data y;;'¢) for the objects in the
training set of class ¢, the parameters in eqn.
(1) are determined to minimise the sum of
squares deviation (method of least squares).

B. The classification of non-assigned objects
(the test set) is then accomplished by fitting
the data of each such object (denoted by w,;)
to each of the @ class models (index ¢) with the
parameters «;%) and B,@ fixed to the values
obtained in step 4. This corresponds to one
linear regression for each object and each
class, i.e. the determination of the coefficients
2,9 to minimise the residuals e,?) in the least
squares sense
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A
@i~ “i(q) = 21 t M.(q) ﬁu(q) + e;,-@) (2)
a=

The object j is assigned to the class for which
the residual variance [s;¢)]* is the smallest

/0= 3 fo O - 4) (3)

Relevance of variables

The method allows the calculation of the
discrimination power and the modelling power
of each variable ¢. The former is computed as
the sum of squared residuals for variable ¢
when all objects in the training set are fitted
to the class models of their “own”’ class divided
by the sum of squared residuals for variable ¢
when all objects in the training set are fitted to
all other class models. The discrimination power
gives valuable information about the importance
of each variable for the prediction of the class
assignment,

The modelling power of variable is essentially
the residual (&) variance of the variable divided
by the variance in the original data (y) of the
same variable, both variances computed over
all objects in the training set. The modelling
power indicates how important a variable is
in describing the similarity within the classes.

Selection of variables

One important goal of the data analysis is
a reduction of the number of variables. This is
particularly important in the present problem
since the variables were introduced with little
knowledge of their actual relation to the
stability of the complexes. Thus, the clas-
sification of a variable as relevant or irrelevant
also indicates whether it is at all related to the
stability of complex hydrides.

However, the selection of relevant variables
(or, alternatively, the deletion of irrelevant
variables from the set originally chosen) presents
fundamental problems. Consider a training set
of N objects, each “known’’ to belong either to
class 1 or class 2. Let us then introduce a number
of variables by means of which we wish to
“explain” the classification of the training set.
It is easily realized that even if we pick these
variables completely at random, we will sooner
or later find a variable that is highly correlated
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with the classification of the training set. The
problem is substantially worse if we also allow
combinations of variables to be correlated with
the classification.

Hence, it is evident that if we condition the
selection of variables on their discrimination
power — i.e. we search for variables that are
highly correlated with the classification of the
training set — we must limit the number of
original variables. Usually, a ratio between the
number of variables and the number of objects
in the training set of less than 1 to 10 is recom-
mended.* This would limit the number of
variables to 12 in the present case being
substantially smaller than we actually have.

However, if we instead condition the selection
of the variables on their modelling power, the
above problem of ‘contrivedness’” is con-
siderably less serious. We then search for
variables being highly correlated with several
other variables in each class submatrix. The
chance of finding such variables in a bunch of
random variables is sufficiently small when the
number of original variables is of the same
order as the average number of objects in each
class. In the present case we have, on the
average, 57 cases in each class, limiting the
number of variables to 50 — 60, more than the
present number of 49. We have, in our selection
of variables, gone one step further, deleting
only variables showing both low discrimination
and modelling power, thereby further reducing
the change of this selection corresponding to
a “random choice™.

Furthermore, the set of retained variables is
independently tested in a later step of the
analysis (see below, verification). Hence we
feel that the deleted wvariables have little
relation to the present classification problem.

In this manner, we have reduced the number
of variables for the complex hydrides from 49
to 28, thus obtaining information on which
theoretical variables are important for the
prediction of the stability of a complex hydride.

Interpretation of the param-
eters

The values of the parameters «; %) and g,,@
in eqn. (1) also give direct information about the
“typical pattern’’ of the data in class g. Thus
;9 is the average value of variable ¢ in the

class and B9 contain information about the
correlation structure. For example, if 8, is
positive and p,,%) is negative, this tells us
that an increase in the first variable can be
compensated for by a decrease in the second
one. Such information has a direct chemical
interpretation as seen below and gives valuable
clues to the factors influencing the stability of
complex hydrides.

Scaling of data

In order to give each variable the same weight
in the initial phase of the analysis, we have
followed the usual procedure of subtracting
the average of the variable (calculated over all
complexes) and dividing by the standard
deviation of the same variable. This makes
each variable have the mean zero and the
variance one. The scaling values used in the
analysis of the hydride data are shown in
Table 1.

PATTERN RECOGNITION RESULTS

1. Initial analysis. To give each variable the
same weight in the analysis, the 49 variables
were autoscaled »* to uniform mean and
variance by subtraction of the variable mean
and division by its standard deviation times
V223 (values in Table 1).

A SIMCA analysis of the scaled data using
A=5 in eqn. (1) showed a fair separation of
the two training sets. The classification was
incorrect for 20 of the 95 ¢stable’’ (class 1)
and 4 of the 20 ‘‘unstable” (class 2) complexes
(see Table 2).

Table 1 shows the parameters «; of the 49
scaled variables for class 1. The values of «;
for class 2 are the same but with opposite sign.
These parameters, estimating the mean of each
variable within the classes, are of the order
0.02 which is rather small compared to the
residual standard deviation after one com-
ponent in the final analysis, 0.06. Hence, the
difference in each variable is insignificant
between the two classes, only in combination
do they make a contribution to the prediction
of the stability of complex hydrides.

2. Reduction of the number of variables. By
deleting variables with both low modelling
and discrimination power, the number of
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Table 1. Variables used in the PR analysis. A: Name of variable. B: Mean over all complexes. C: Standard
deviation over all complexes. D: Modelling power with A= 5, 49 variables. E: Discrimination power, same
model. F: a; for class 1 (stable). G: §; for class 1, A=1, 28 variables. H: §; for class 2, A=1, 28 variables.

A B C D E F G H
1 A, mp.°C? 1184 499 93 1.1 -.017 - -
2 A, b.p.°C 1017 244 .88 1.2 -—.017 - -
3 A, density, g/ml? 83.5 29.5 70 11 012 - -
4 A, atomio radius, A ¢ 188.7 32.3 .96 5.2 .018 .27 .08
5 A, coval. radius, A b 1656.0 32.3 94 5.2 .017 27 .07
6 A, ionic radius, A ® 92.26 30.2 97 6.0 .017 .27 .08
7 A, lst ion.energy, keal/g mol 116.2 10.0 .83 40 -—-.016 -.28 —.06
8 A, electronegativity ¢ 9.112 809 .96 35 —-.018 .26 ~—.08
9 B, m.p. °C*? 1320 921 97 _ 4.1 .004 .02 .26
10 B, b.p.°C 2988 778 98 4.6 .006 .03 .28
11 B, density, g/ml ? 301.3 169 .80 58 —.012 05 —.34
12 B, atomic, radius, A 126.7 23.9 99 46 —.008 -—.04 .30
13 B, coval. radius, A ® 105.7 20.1 99 44 —.008 —.02 .32
14 B, ionic radius, A 40.65 18.7 98 64 -—.009 —.01 .34
15 B, 1st ion. energy, koal/g mol 158.7 26.1 96 6.6 .004 .04 .23
16 B, electronegativity ¢ 17.13 2.38 .90 9.0 .001 .06 .14
17 D, mol.weight 54.68 374 .66 16 —.017 —.20 .07
18 D, No. of chain atoms 3.183 2.36 14 31 -—.014 .19 14
19 D, b.p. of DH at 760 Torr 16.92 138 89 29 -.018 - -
20 D, density of DH (20 °C) 756.6 455 .89 83 —.016 - -
21 D, n-donor or acceptor (1,0 or — 1) .3348 733 57 47 —.028 —.08 .07
22 D, No. of substs. on 1st ligand atom 7768 .896 .84 3.8 001 —.24 .15
23 D, average electronegat. of these ¢ 24.46 3.63 b2 21 —.006 - -
24 D, coval. radius of 1st ligand atom ¢ 788.2 214 .78 1.0 .001 - -
25 D, ionic radius of 1st ligand atom ? 72.15 17.7 .81 1.2 —.010 - -
26 D, lst ion.energy of lst lig.atom 295.8 32.8 76 20 —.012 - -
27 D, electronegativ. of 1st lig.atom ¢ 29.056 5.48 .83 33 -—-.02¢4 -.19 .18
28 E, corresponding to var. 17 43.18 39.8 72 21 —.008 .23 .10
29 E, 18 2.509 2.50 .78 36 —.006 —.22 16
30 E, 19 —47.40 167 .88 33 —.005 — -
31 E, 20 604.8 524 90 4.0 —.007 - -
32 E, 21 .2768 631 .63 29 —.022 —.07 .10
33 E, 22 .3438 1.08 .86 6.9 —-.007 -—.29 .16
34 E, 23 23.36 2.96 .63 14 —.007 - -
35 E, 24 675.6 273 79 2.7 .008 - -
36 E, 25 62.76 23.5 .83 21 .001 - -
37 E, 26 299.8 28.7 a7 40 —.012 - -
38 E, 27 27.20 5.89 .87 21 -—.011 -—.22 .20
39 F, 17 28.87 37.1 77 14 —.003  —.23 A1
40 F, 18 1.679 2.34 79 29 -—.001 -—.22 .18
41 F, 19 —116.7 166 .90 2.8 .001 - bl
42 F, 20 426.6 497 94 58 -—.001 - -
43 F, 21 1741 528 .64 31 -—.013 .07 13
44 F, 22 —.0804 1.11 89 5.2 .008 —.26 .16
45 F, 23 22.60 2.67 .69 17 —.001 - -
46 F, 24 559.5 281 91 3.1 .007 - -
47 F, 25 52.58 24.1 94 2.6 .003 - -
48 F, 26 304.2 24.4 73 2.7 —.003 - -
49 F, 27 25.04 5.52 .89 31 —.002 -—.21 .23

4 Times 10; ® Times 100; ¢ Times 1000.
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Table 2. Resulting classification of the hydrides. Prior classification: Compounds 1-— 95, stable
(1); compounds 96— 115, unstable (2); compounds 116 — 224, test set (0). A: Name of hydride.
B: Prior classification in verification step. C: Resulting classification with 4 =5 and 49 variables.
D: Resulting classification with A=1 and 28 variables. E: Resulting classification in the verifi-
cation step.

A +sign after the resulting class number indicates that the ratio between the standard devi-
ations for the two class models is larger than V2.

A BC D E A B C D E
1 LiBH, 11 1 1 53 LiAIH(OEt), 11 2 2
2 LiBH,CH, 02 1 1 54 LiAIH(OBu-tert), 01 2 1
3 LiBH,(2,4,6-PhMe,), 1 1+ 1 1 55 LiAIH(OPent-tert), 1 1 1 1
4 LiBH,SH, 02 2 2 56 NaAlH, 01 1 2
5 LiBHEt, 1 1+ 1 2 57 NaAlH,(iso-Bu) 1 2+ 1 1
6 LiBH(N,C,H,), 0 1+ 1 1 58 NaAlH,(C=C-CH,n) 0 2 1 1
7 LiBH(N,C;HMe,-3,5), 1 1+ 1 1 59 NaAlH (OBu-tert) 1 24+ 2 2
8 LiBH(SMe), 02 2 2 60 NaAlH,Me, 0 1+ 1 1
9 NaBH, 1 1+ 1+ 1+ 61 NaAlH,Et, 1 1+ 1 1
10 NaBHEt 0 2 1+ 1+ 62 NaAlH,(n-Pr), 0 1+ 1 1
11 NaBH;(n-Pr) 1 2 1+ 1+ 63 NaAlH,(iso-Bu), 1 1+ 1 1
12 NaBH,CN 0 1+ 1+ 1+ 64 NaAlH,(C=C,H,-n), 0 1+ 1 1
13 NaBH,CONHMe 11 1 1 65 NaAlH,(OBu-tert), 11 2 2
14 NaBH,(2,4,6-PhMe;), 0 1+ 1 1 66 NaAlH,(OCH,CH,NMe,), 0 1 2 1
15 NaBHMe, 1 1+ 1 1 67 NaAlH,(OCH,CH,OMe), 1 1 2 1
16 NaBHEt, 0 1+ 1 1 68 NaAlHMe, 0 1+ 1 1
17 NaBH(n-Pr), 1 1+41 1 69 NaAlHEt, 1 1+1 1
18 NaBH(OMe), 0 2 2+ 2+ 70 NaAlH(n-Pr), 0 1+ 1+ 1+
19 NaBH(O-Bu-t),; 1 2+ 24 2+ 71 NaAlH(iso-Bu), 1 1+ 1+ 1+
20 NaBH(OOCH), 0 2 2+ 2+ 72 NaAlHPh, 0 1+ 1+ 1
21 NaBH(OCH,CH,OMe), 1 2+ 2+ 2+ 73 NaAIH(NEt,), 11 1 1
22 NaBH(N,C,H,); 0 1+ 1 1 74 NaAlH(OEt), 01 2 2
23 NaBHF, 1 1+ 24 2 756 NaAlH(OBu-tert), 11 2 1
24 NaBH(n-Bu), 0 1+1 1 76 NaAlH(OCH,CH,NEt,), 0 2 1 1
25 NaBH(OPr-iso), 1 2+ 2+ 2+ 77 NaAIH(OCH,CH,0OCH,);, 1 2 2 1
26 NaBH,NMe, 02 1 1 78 KAIH, 0 1+ 1+ 1+
27 KBH, 1 1+ 1+ 1+ 79 KAlIH,Me, 1 1+ 1+ 1+
28 KBH,CN 0 1+ 1+ 1+ 80 KAIH,Et, 0 1+ 1+ 1+
29 KBH;CONHMe 1 1+ 14+ 1+ 81 KAlIH,(n-Pr), 1 1+ 1+ 1+
30 KBH,CONMe, 0 1+ 14 1+ 82 KAIH,(iso-Bu), 0 1+ 14+ 1+
31 KBH,4(COOEt) 1 1 1+ 1+ 83 KAlHMe, 1 1+ 1+ 1+
32 KBH,F 01 14 1+ 84 KAIHEt, 0 1+ 1+ 1+
33 KBH,(N,C,H,), 1 1+ 1 1 85 KAIH(n-Pr), 1 1+ 1+ 14
34 KBHEt, 0 1+ 1+ 1+ 86 KAIH(iso-Bu), 0 1+ 1+ 1+
35 KBH(NCH,), 1 1+ 1 1 87 KAIHPh, 1 1+ 1 1+
36 KBH(N,C,H;), 0 1+ 1 1 88 KAIHCI, 0 24+ 1 1
37 KBH(N,C;HMe,-3,5), 1 1+ 1 1 89 RbAIH, 1 1+ 1+ 1+
38 RbBH, 0 I+ 14+ 14 90 CsAlH, 0 1+ 1+ 1+
39 CsBH, 1 1+ 1+ 1+ 91 LiGaH, 1 2+ 2+ 2+
40 CsBH(NC H,)s 0 1+ 1 1+ 92 NaGaH, 0o 2 2 2+
41 LiAlH, 11 2 24 93 KGaH, 1 1 1+1
42 LiAlH,Me, 0 1+ 2 2+ 94 RbGaH, 0 1+ 14+ 1+
43 LiAlH,(iso-Bu), 1 1+ 2 2 95 CsGAH, 1 1+ 1+ 1+
44 LiAIH,(CN), 01 2 2 96 LiBH,SH 02 1 1
45 LiAlH,(OMe), 1 2 2 2 97 LiBHMe, 2 1+ 1 1
46 LiAlHMe, 0 1+ 2+ 2+ 98 LiBH(OMe), 01 24 2+
47 LiAlHEt, 1 1+ 2 2 99 LiBH(OCH,CH,OMe), 2 2 24 2+
48 LiAlH(iso-Bu), 0 1+ 1 1 100 NaBH(OEt), 0 2+ 24 2+
49 LiAIH(C,H,-cyclo), 1 1+ 14 1+ 101 NaBH(OCH,CH,NMe,); 2 2+ 2+ 2+
50 LiAlIH(C,H,;-cyclo)s 0 1+ 14+ 14+ 102 KBH(OCH,CH,OCH,); 0 2 2+ 2
51 LiAlHPh, 1 1+ 1+ 1 103 LiAlH,(OC,H,-1s0), 2 2 2 2
52 LiAlTH(NEt,), 0 1 1 14 104 LiAlH,(OBu-sec), 02 2 2
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Table 2. Continued.

A BC D E A BC D E
105 LiAIH(OPr-iso), 2 1+ 2 1 163 LlAlH,(OCmHu) 2
106 LiAIH(OBu-sec), 01 1 1 164 LiAlH,C 24
107 NaAlH,Et 2 2. 1 1 165 LlAlH,(Et), 2
108 NaAlH,(OCH,CH;NMe,) 0 2+ 2 2 166 LiAlH,(Pr-n), 2
109 NaAlH,(OCH,CH,OCH,) 2 2+ 2 1 167 LiAlH,(CH,-cyclo), 1
110 NaAIHCl, 02 2 2 168 LiAIH,(PhMe), 1
111 LiInH, 2 24+ 2+ 2+ 169 LiAIH,(OEt), 2
112 LiInHBr, 0 2+ 2+ 2+ 170 LiAlH,(OBu-tert), 2
113 LiInHCl, 2 2+ 2+ 2+ 171 LiAlH,(OC,H,,)s 1
114 LiInHI, 0 2+ 2+ 2 172 LiAIH,Cl, 2+
115 LiTIH, 2 2+ 24 24 173 LiAlH,Br, 2+
116 LiBH,CN 1 174 LiAlH,I, 2
117 LiBH,NC,H, 1 175 LiAIH(C,H,), 1
118 LiBH,0H 2 176 LiAlH(C,,H,,-n), 1
119 LiBH,OMe 2 177 LiAIH(NPh,) 14
120 LiBH,OBu-tert 2 178 LiAIH(OMe), 2
121 LiBH(Bu-n), 1 179 LiAlH(OPr-n), 1
122 LiBH,OH, 2 180 LiAIH(OBu-n), 1
123 LiBH(Bu-sec), 1 181 LiAlH(C,H,,-n), 1
124 LiBH(Bu-iso), 1 182 LiAIH(OC H,,.n), 1
125 LiBHPh, 1 183 LiAIH(OC ,, -cyclo), 1
126 LiBH(OH), 2+ 184 LiAIH(OPh) 1
127 LiBHF, 2+ 185 LiAlIHCl, 2+
128 NaBH,D 1+ 186 LiAlHBr, 2+
129 NaBH,(C, 1 187 LiAlHI, 2
130 NaBH,cdoh 1 188 NaAIH,(OMe) 2
131 NaBH,COOMe 1 189 NaAIH,(O-furfuryl) 2
132 NaBH,0H 1 190 NaAlH,(OMe), 2
133 NaBH,(OPh) 1 191 NaAlH,(OEt), 2
134 NaBH,(OPhCl-p) 1 192 NaAlH,(OPr-n), 2
136 NaBH,(OPhCl-m) 1 193 NaAlH,(OPr-iso), 2
136 NaBH,F 1 194 NaAlH,(OPh), 1
137 NaBH,(PMe,) 1 196 NaAlH,(OCH,CH,OEt), 2
138 NaBH,(OH), 2 196 NaAlH,-
139 NaBH,F, 2 (OCH,CH,OPr n), 1
140 NaBHD, 1+ 197 NaAl
141 NaBHPh, 1 (OCH,CH,OPr-lso), 2
142 NaBH(OH), 2+ 198 NaAlH,-
143 NaBH(OBu-n), 2+ (OCH,CH,OBu-n), 1
144 KBH,(NMe,) 14+ 199 NaAlH,(OCH,CH,0Ph), 1
145 KBH,(NEt,) 1+ 200 NaAlH,-
146 KBH,(OH) 1+ (OCHMeCH,0Me), 2
147 KBH(N,C,;HMe,-3,5), 1 201 NaAlH,-
148 KBH,(O 1 (OCMe,CH,OMe), 2
149 KBH(Pr-lso), 1 202 NaAlH,(O(CH,),OMe), 1
150 KBH(Bu-sec), 1 203 NaAlH(C, Hu cyclo), 1+
151 KBH(C,H,,-sec), 1 204 NaAlH(C, 1+
152 KBH(C,H,-cyclo), 1 205 NaAlH(ciI,Ph), 1
1563 KBH(C, “-cyclo), 1 206 NaAlH(OMe), 2
164 KBH(O 2 207 NaAlH(OPr-n), 2
155 RbBH,(N(Bu-n),) 1 208 NaAlH(OPr-iso), 2
156 RbBH(CH,), 1 209 NaAlH(OBu-sec), 2
157 LiAlH,Me 2 210 NaAIH(OPh), 1
168 LiAlH,Et 2 211 NaAlH(OCH,CH,OEt), 1
159 LiAlH,(C,H,) 2 212 NaAlH(OCH,CH,OPh), 1
160 LiAlH,(OMe) 24+ 213 NaAlH(OCMe,CH,OMe), 1
161 LiAlH,(OEt) 2+ 214 NaAlH-
162 LiAIH,(OBu-tert) 2 (OCH,CH,CH,OMe), 1
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Table 2. Continued.

A B C D E A BC D E
215 NaAlH(O(CH,),0Me), 220 CsInH, 1+
216 LiGaHgy(Me) 24 221 NaTIH, 2+
217 NalnH, 2+ 222 KTIH, 2
218 KInH, 1 223 RbTIH, 2
219 RbInH, 1 224 CsTIH, 1
variables was decreased first to 38 and then to DISCUSSION

28 variables without an increase in the error
rate in the classification of the training set.
For the ligands, such variables were deleted
which showed low relevance for all three
ligands. When further deletions were made,
the error rate increased and we therefore
stopped at the number of 28 (see Table 1).

3. Final analysis. The classification with
these 28 variables was essentially the same
with A=5, 4, 8, 2 and 1. For simplicity of
interpretation we have preferred the results
with 4=1. The resulting parameters g; for
class 1 and 2 are shown in Table 1. The param-
oters «; for the retained 28 variables are,
naturally, the same as for the 49 variable case.
The residual standard deviation with A=1
is 0.06.

The classification of the training and test
sets with the 28 variables and 4 =1 using the
parameters in Table 1 is shown in Table 2;
for interpretation, see below.

4. Verification. To study the significance of
the above classification, we divided the training
set into two halves, letting the first half continue
being the training set and making the second
half constitute the test set with “known
answers’’. These data were then analysed with
A=1 and the same 28 variables as above.
Thus, the parameters « and g were calculated
on the basis of the first half only and the classes
of complexes in the second half were ‘‘predicted”
on the basis of these parameters. The results
shown in Table 2 are encouraging. The error
rate in the classification of the test set was 10
of 47 for the first class and 2 of 10 for the second
class. This is significantly better than chance
(x*=19.1, p<0.001) which indicates that the
parameters in Table 2 indeed have a ‘real
prediction power for the stability of complex
hydrides.

Eaxtraction of relevant wvariables (features).
The results of computation show . that the
variables related to fundamental atomic prop-
erties of alkaline metals (atomie, covalent
and ionic radii, the first ionization energy and
electronegativity) exhibit significantly higher
relevance than the variables related to derived
properties (melting point, boiling point and
density). The relevance of the variables proposed
for the metals of the Group III B does not
differ markedly in this respect.

The computation extracts five relevant
variables for each ligand from eleven variables
originally proposed. Three features (molecular
weight, number of atoms and number of
substituents on the first atom of ligand) re-
present the bulkiness of the ligand, whereas
the remaining two, =-accepting ability and
electronegativity, characterize the nature of the
first ligand atom. In the formulation of the model
we have not included the nature of the atoms
of the ligand chain, other than the first one. This
might play a role in the classification of some
special type of complex hydrides (see below).

Factors influencing the performance of the
classification. First, the results of the clas-
gification are based on the characterization of
the atoms interacting directly with the central
atom B. In the present model, the influence of
the atoms located further in the chain of
a ligand is described only by their bulkiness,
not by their nature. Nevertheless, the high
correctness of the classification (about 75 %)
shows, that important characteristics of the
crucial atoms have been included. An increase
in the degree of correctness may be expected
when the variables for nature of the other
ligand atoms are considered (as well as the other
additional variables).
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Secondly, the correctness of the classification
is surprisingly high in spite of the fact that the
selection of the hydrides used for training as
“stable’” and ‘“unstable” is not based on the
rigid definition of “stability’’ and ‘‘instability”’,
respectively. The situation in complex hydride
chemistry forced us to use as samples such
hydrides which were proclaimed by authors
on the basis of more or less direct observations
as ‘stable” or ‘“unstable’’ compounds. But
we are not able to check the situation. Often
it is difficult to make a decision at all, e.g.
some hydrides are stable in the solid state and
unstable when dissolved in a solvent. But PR
is a powerful method for classification of
systems with low information level. The
present work shows that it is sufficient if the
learning set is correctly classified in the majority
of cases; the individual details are less important
as long as the average contains the correct
information.

Furthermore, the correctness of the clas-
sification is surprisingly high if we also consider
the shortage of ‘‘unstable” hydrides for train-
ing which may exert a substantial influence on
the learning procedure.

Finally, possible errors in the data used and
an information noise arising during their
working up might also negatively influence the
performance of the classification.

The total effect of the above four factors is
probably responsible for the main part of about
25 9, incorrectness in our classification case.

Note. When only a half of the original training
set is used, the percentage of correct classifica-
tion does not markedly change, but about 10 %
of cases are re-classified.

General trends. The simplified model, MODEL-
1, reveals some general fundamental trends in
“gtability’”’ of hydrides ABH,D,_, as related
to the ligand D:

1. The hydrides with ligands attached to the
central atom B by means of atom with free
electron pair(s) are significantly less stable
than those where D are alkyls. The stability of
alkoxo derivatives (D =OR) might be to some
extent overestimated in literature.

2. On the other hand, hydrides with ligands
bonded to the atom B by an atom with un-
saturated bond are more stable than alkyl
hydrides of comparable size. This finding
favours the study of hydrides of this type.
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3. The hydrides ABH,D, , where A=Li,
Na, K and B equals boron or aluminium seem
to be stable when D is small. Very interesting
exceptions in this series are exhibited by
LiAlH,D,_, hydrides which, using our MODEL-
1, are ‘‘unstable’” in the case of small size of
D. This is evident, e.g., from the ‘instability”
of the derivatives with D=CH; and C,H;. The
destabilizing effect of small size of the ligands
in LiAIH,R,_, seems to dominate even over the
above stabilizing effect 2. The naturally
extreme case is LiAlH, with very small sub-
stituents H~ which is classified into class of
‘“unstable” compounds. But this classification
can be correct if we consider that LiAlH, is
thermodynamically metastable.!® Some other
ABH, are also classified as ‘‘unstable’’ ones
(Table 3).

Non-generality of MODEL-1. The clas-
sification of hydrides in the training set
with some donor atom in an appropriate
position in the chain of the ligands is in some
cases dubious because of our a prior:
knowledge. Thus, NaBH(OCH,CH,0CH,),,"
NaAlH,(OCH,CH,OCH,), '* and  NaAlH-
(OCH,CH,0CH,), ? classified as ‘“unstable”
are to a significant extent stable. On the other
hand, a majority of included items, namely
LiBH(OCH,CH,0CH,);,'* NaBH(OCH,CH,N-
(CH,),)5,* KBH(OCH,CH,0CH,),,'! NaAlH,-
OCH,CH,OCH;* and NaAIH,OCH,CH,N-
(CH,); 1 are classified ‘correctly’” as “un-
stable’” hydrides. These facts speak for a non-
generality of our MODEL-1 in this respect.

Very interesting is also the classification of
the above type of hydrides of ‘unknown
stability”’. The subset of the hydrides of the
general formula NaAlH,(O---OR), (where
- - - represents a carbon chain) is split by the
MODELS-1 into ‘“stable’ and ‘“‘unstable’ classes,
respectively. This classification is evidently

Table 3. Classification of ABH, according to
the MODEL-1. Hydrides under the border line
are classified as ‘‘unstable’” compounds, other-
wise as ‘“stable’”’ ones.

LiBH, NaBH, KBH,
LiATH, | NaAIH, KAIH,
LiGaH, NaGaH,| KGaH,
LilnH, NalInH, | KInH,
LiTIH, NaTIH, KTIH,

RbBH, CsBH,
RbAIH, CsAlH,

RbGaH, CsGaH,
RbInH, CsInH,

RbTIH, | CsTIH,
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sensitive even to very small changes of R. Thus,
NaAIH,(OCH,CH,0C,H,-n), !* is classified as
“gtable’’, whereas very similar NaAlH,-
(OCH,CH,0C,H;), ** and NaAlH,(OCH,CH,-
OC,H,-is0), !* are classified as ‘‘unstable’ ones.
This fact calls for consideration of some
secondary variables for the MODEL-2 as
additional ones to the variables representing
the effect of a donor atom in the chain of ligand.
The classification of the NaAlH(O- - -OR),
hydrides as ‘‘stable’’ species is in accordance
with the generally found higher stability of
these monohydrido derivatives over cor-
responding dihydrido compounds.

Parameters alfa*

1. Alfa 4, 5 and 6 (for radii) are positive
for class 1 and negative for class 2; the average
size of metal A is larger for “stable’’ hydrides
than four “unstable’” ones.

2. Alfa 7 (for the first ionization energy)
is negative for class 1 and positive for class 2;
more easily ionizable alkaline metal gives
(on average) more stable complex hydrides.
This is a natural consequence of point 1 and
the correlations in a group in the periodic
system. ’

3. Alfa 8 (for electronegativity) is negative
for class 1 and positive for class 2; on
average, the complex hydrides with low electro-
negativity of alkaline metal are relatively more
stable than those with high electronegativity.
This is also a correlation of the same nature as
point 2. Hence, considering the connection
between variables 1 through 5 in a group in the
periodic system, these variables mainly express
the place of atom A in the group.

4. Alfa 11 (for density of the central atom)
is negative for class 1 and positive for class 2;
this shows that the central metal atoms with
low density give generally more stable hydrides
than specifically heavier ones.

5. Alfa 32 (n-acceptor ability of the first
atom of the second ligand) is negative for
class 1 and positive for class 2; the influence of
the difference in accepting ability of the first
ligand atom is highest for the 2nd ligand and
stability is higher in the case of acceptors.

* Only significant parameters were used for
interpretation.

Parameters beta*

1. For class 2, the parameters beta 12, 13,
14 (size) for central atoms B are negative,
while the parameters beta 27, 38, 49 (electro-
negativity of the first atom), beta 22, 33, 44
(number of substituents on the first atom) and
beta 18, 29, 40 (number of atoms in the chain)
for the ligands are positive; thus, a larger atom
B can be compensated not only by a less
electronegative first atom, but also by a less
bulky ligand. In the same way as for atom A,
the parameters beta 15 and 16 representing
the nature of the central atom B are positive
as a consequence of the correlations in the
periodic system. '

2. For class 1, the parameters beta 4, 5, 6
expressing the size of alkaline metals A are
positive, whereas the parameters beta 27, 38,
49, beta 22, 33, 44, beta 18, 29, 40 and beta
17, 28, 39 (molecular weight of D) for ligands
are negative; thus, a larger atom A is com-
pensated by a less electronegative first ligand
atom as well ag by a less bulky ligand.

Further, the negative signs of the parameters
beta 7 and 8 for the first ionization energy and
electronegativity, representing the nature of
the alkaline metals A, show that a decrease in
these two factors potentiates the trends found
for the ligands.

Conclusion

We feel that PR methodology gives an
interesting opportunity to investigate complex
structure-reactivity relationships. Considering
the crudeness of the present model, exhibited
by the rather simple nature of the variables
used, the results of the present investigation
is encouraging. We are presently working on
an extension of MODEL-1 to include more
variables and on an extension of the data set
to more cages in the training set.
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