Acta Chemica Scandinavica A 31 (1977) 347—353
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It is shown by application of Brenstedian
energetics that the loss of mechanical work
(dissipation) by a reversible “cinematographic’
reproduction of an irreversible process is equal
to the absolute temperature of the standard
thermal reservoir from which the compensation
entropy is taken times the entropy production
during the irreversible process.

Furthermore it is shown that the loss in
absolute exergy during an irreversible process
in an isolated thermodynamic system is equal
to the absolute temperature of the energetic
zero-point times the entropy produced.

Examples are given and the difference
between energetic zero points and ‘heat death
points’’ is discussed. The relative exergy for
open, stationary flow systems, previously
discussed in literature is found to obey similar
relations, but the energetic zero points are here
arbitrarily chosen and not endogeneously
determined by the capacities of the systems,
as the case is for the absolute exergy.

In previous publications® I have tried to
reconcile Brenstedian and Gibbsian thermo-
dynamics and have shown that Gibbsian
thermodynamics may be considered a sub-class
within the more general framework of Brenste-
dian thermodynamics. In order to be in closest
possible analogy with the procedures of analyti-
cal mechanics, Bronsted’s energetics was ex-
tended to encompass an exergy function being
the thermodynamic equivalent of potential
energy in mechanics rather than the internal
energy. Whereas internal energy is conserved
during irreversible transformations in isolated
systems, the exergy decreases. Furthermore,
the exergy was shown to have an interesting
non-additive property, when subsystems were
combined into larger systems, whereas the
internal energy has to be additive, if the law
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of conservation of energy in nature should not
be violated.

In the present paper the connection between
loss in exergy and entropy production during
irreversible processes will be described, and
illustrated by simple examples as an introduc-
tion to the systematic treatment of multicompo-
nent transport processes in forthcoming papers.

LOSS OF MECHANICAL WORK IN
A REVERSIBLE REPRODUCTION
OF AN IRREVERSIBLE PROCESS

In Fig. 1 we have depicted an isolated ther-
modynamic system (an energetic universe)
which we have subdivided into a closed system
described by the vectors of potentials and
quantities (P, K), a mechanical reservoir
(e.g. a weight in a gravity field) and a thermal
standard reservoir with the fixed absolute
temperature T'. We now perform an infini-
tesimal irreversible process

Work
System P Y Mechanical
~—
P K reservoir

vy

Thermal

reservoir
Tst

dT8t=°

Fig. 1. Closed thermodynamic system in com-
munication with mechanical and thermal
Teservoir,
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P, K-»P+dP, K+dK (1)

in the system. According to Brenstedian
energetics we have

ZTi ds ipro(l + Z
K+ 8p0a
A8,y irr) = 0 (2)

PdK + dEyecp(irr) +

The ¢dM terms (¢=gravity potential) in the
mechanical reservoir have been lumped together
in the mechanical potential energy term d..p
and the terms due to produced entropy have
been separated out from the PdK-sum for
the system. We consider general polythermal
systems, where the entropy may be produced
at many different temperatures (e.g. heat
conduction).

Consider now a reversible ‘‘cinematographic”
reproduction of the irreversible process. That
means the following: We move around all
the quantities inside the closed system in
exactly the same way as they move during
the irreversible process. We also produce or
destruct quantities inside the system (moles
of chemical components, interfacial area, but
not entropy) exactly as in the irreversible
process, and make the same supplies from
outside (—dSg(irr)) from T4, volume from
external volume). But since we make the trans-
formation (1) in a reversible manner, we have
no production of entropy, and we have to
compensate for that by supplying the additional
entropy-quantities dSi; to the temperature T
from the standard reservoir by means of
reversible Carnot-cycles. We therefore have

A1, oq(irr) = Sl (rev) 3)

Brensted’s work principle applied to the revers-
ible reproduction requires that

2TdSle + K :%S PAK + dEyecp(rev) +
ex

T dS¢(rev) =0 (4)

When we speak about a reversible repro-
duction of the irreversible process we must have

>  PdK(rev)= > PdK (irr)

K48 K480 (5)

and by subtraction of (2) from (4) we obtain
A ooy (rev) — AE o op (irr) = Tgy (dSirry, — diStevy)
(6)

The following eqn. must apply
as i"st - dSrCV“ =2d8l, = d‘s’tOtptod (7)

From (6) and (7) we obtain for the loss of
mechanical work by performing the same
process irreversibly instead of reversibly

AE e (rov) — AB yeey (irr) = Ty diStotyr g (8)

Only if Ty is equal to the temperature in the
system (in case of monothermal systems), is
the left hand side of (8) equal to the so-called
“loss of work” in Brensted’s terminology.
When T decreases, an increasing amount of
the work gained by reversible performance
is used again to “elevate’’ entropy from 7'y
t0 Tyygtem- In the terminology of my previous
paper,® the sum 3 T; dSi,.q is equal to the
loss of a very special conditioned exergy, defined
by connecting the T'-positions in the system
with large thermostats of the same tempera-
tures allowing the entropy to flow neutrally
between system and thermostats.

A special situation arises when Ty tends to
zero. As seen by eqn. (8) we will not get addi-
tional mechanical work out of the system by
reversible performance. This is not so strange,
as it might appear in the first place. Formally
one cannot see the difference between using
a certain amount of mechanical work to elevate
entropy reversibly from T'4-0 to the local
temperature T or dissipation of the mechanical
work by friction processes at the temperature
T,. The entropy produced at T in the latter
case is equivalent to the entropy supplied to
T, in the former. A certain manner of mimicking
an irreversible process would be to make
a reversible reproduction of the process sup-
plying the compensating entropy by dissipating
locally the additional mechanical work gained.
There will be no difference between the original
process and the mimicking process and the
work difference (8) has to be zero.

As an example we may consider “simple’
heat conduction, which is energetically not so
gimple as it is usually described in literature.*
Consider stationary heat conduction in a rod
between the temperatures T, and T', (T, > T). If
we move the amount of entropy Syans revers-
ibly from 7 to T+dT (dT may be negative)
by means of a Carnot cycle, the mechanical
work thus locally gained is — 8Simns d7'. We

Acta Chem. Scand. A 31 (1977) No. 5



now dissipate the work gained at the tempera.-
ture 7' (making, e.g., like Count Rumford some
canon-boring at the position in question).
The produced entropy becomes 6Sp0q=
— 08tans A7'/T. In case of stationary heat
conduction the produced entropy joins the
entropy transported so we get the differential
eqn. for the transported entropy through
the rod

A0S rans= — 6Strans AT/T (9)

Separating the variables and solving we obfa,in
T'308trans(2) = T 0Strans(T) =T'108tans(1)  (10)

A “quantity” named heat =T 38y,, seems to
flow in a conserved manner from 7', to T',.
This superficial simplicity has made most
thermodynamicists regard ¢heat’’ to be the
primitive thermal quantity instead of entropy.
Heat is, however, in our thermodynamics
regarded as a pseudo-quantity. It is only de-
fined in flow systems. Concentration of heat
or heat content cannot be defined, whereas
entropy is defined both as a stationary and
a flowing entity.

LOSS IN ABSOLUTE EXERGY AND
ENTROPY PRODUCTION

In Fig. 2 is shown a trajectory in a thermo-
dynamic phase space described by an infini-
tesimal, irreversible process in an isolated
thermodynamic system from state I (P, K) to
state IL (P+dP, K +dK). The thermodynamic
phase space is here macroscopically defined
(in contrast to the one used in statistical
thermodynamics). We may imagine a space

Fig. 2. Trajectory in thermodynamic phase
space of an infinitesimal irreversible process
and the corresponding energetic zero points.
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spanned by orthogonal P- and K-axes for the
different localities in our system. When the
constraints of the system are known (the con-
stitutive relations) they will not all be necessary,
and any sufficient set of P’s and K’s may be
selected to span the phase space. Since the
process I-II happens in an isolated system
the change in internal energy d¥=0 and dS
=dSptod'

We now open our system for interaction
with an external mechanical reservoir, and
extract the exergy from system I, until it
reaches its energetic zero point I,. It should be
emphasized that volume in our energetics is
a quantity and a definite volume V., should
be allocated to the system, and should be
included as regions of vacuum from the begin-
ning, if matter is not spread throughout the
system. Due to the definition of exergy in the
previous paper we have for the change in
internal energy and entropy of the system
along the path I-»I;: 4E= —Ez; and 4S=0.
Precisely the same can be said of the path
II-II,, but it is important to notice, that the
two energetic zero-points differ infinitesimally,
because of the presence of the extra produced
entropy in system II. To close the cycle we
have therefore to perform the process I,—II,
with d¥ =dE, and the entropy change dS=dS,
which has to be supplied by an external thermal
Teservoir.

Since £ and S are functions of state of the
system, we get by considering the closed cycle
in Fig. 2

dSo=dSptod (11)
and
Ex,—Ezx,= —dEx=dE, (12)

At the energetic zero-point the system occupies
its maximum volume V.., and the temperature
is everywhere the same (7',) as are all the trans-
port-complex potentials, such as gravi-electro-
chemical potentials z;. Pressure is not neces-
sarily equalised, for example it varies in
a gravity field even at equilibrium. The equali-
sation of potentials or composed potentials
is the case both in I,, in II,, and in any point
of the curve I,—»II,, which may be regarded
as intermediary energetic zero-points. The only
quantity supplied from outside is entropy,
and all the internal quantity transfers, creations
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or destructions will be energetically neutral
due to the equalisation of potentials or com-
posed potentials. Therefore we have

AEo=3 PydK =TodSo=T4dSpr0a (13)

Introducing eqn. (13) into eqn. (12) we get
the simple, but most important relation for
the loss of absolute exergy (for the difference
between absolute and relative exergies, see
the next section)

—ABz="T,d8,r0q (14)

The temperature of the energetic zero-point
hides the information on the restricted capaci-
ties of the system, which is included in every
exergy calculation. The relative nature of the
exergy loss is hereby made clear: The lower
the temperature of the energetic zero-point
the lower the loss of exergy for a given entropy
production. In the extreme case, where T,
approaches zero, no exergy would ever be lost,
since the 7'dS;;,q may be fully retransformated
to mechanical work by reversible transfer of
entropy from T to the very small absolute
temperature. Also, 7', depends on what is
inside our system, and thus reflects again the
non-additivity of exergy discussed in the pre-
vious paper.

As a very simple example, consider irrevers-
ible ‘“heat’ conduction between two identical
objects with entropy capacities ¢ independent
of temperature. In the previous paper we
found the exergy to be
Ex= g (Ty—T,) (15)
We consider T,>7T, and connect the two
objects with a thin heat conducting rod, in
which (quasi) stationarity can be assumed at
any time. By eqn. (10) we can express the
“degree of advancement’’ of the irreversible
process through the integral quantity Siaus(2),
which has left the highest temperature. The
produced entropy is given by

dSptod =dSrans(1) — dStrans(2) =
T
(7-1) ASmas(@

The loss of exergy is given by differentiation
of (15) and application of the constitutive
relations

(16)

— dEx[dSans(2) =
c dar, daT,
— 3Ty (dstmm) - o)

ASrans(1) _1 (T, +7T,) (T_z l)
d’gtrans(z) T2 2 Ty -

(17)

Since the temperature of the energetic zero-
point is seen to be the arithmetic mean of 7',
and T, by symmetry considerations, we have
in (16) and (17) a verification of the relation
(14). It should be stressed, that 7T, is not
equal to the end temperature of the irreversible
heat conduction process, which will be in the
interval (T|T,) due to the greater amount
of entropy delivered to the temperature 7',
than removed from the temperature T,.

As a somewhat more realistic example take
two bodies with heat capacities C, and C,
independent of the temperatures 7', and T',.
For the exergy in that case we have by the
general method given in the previous paper

Ex(T,,T,)=C,T,+C,T,~T,>C; (18)
with the energetic zero-point
Ty =T ,CEGT ColZCi (19)

Doing the analogous differentiation to the one
performed in (17) we obtain

— dE/AS4rans(2) =T [(%)C'lzci _ (%‘_Dcx/zc,]
(20)

For dSp0a/dSirans(2) we still have eqn. (16),
and eqn. (14) is now easily seen to be obeyed.
The temperature reached in the end by the
irreversible process — which we shall call the
“heat death point” of the system — is given by

C
Tteat dgeath=T1+ z“éi (Ty=T4)=

T,— z% (T2—T)) 1)
As an illustration we consider equal amounts
of the same substance at 0 and 100°C with
the heat capacity taken to be independent of
temperature. In Fig. 3 we have shown the
irreversible path in a T', — T'; phase space when
the two substances are connected by a thin
conductor. The trajectory of energetic zero-
points is also shown. The two trajectories have
to meet in the heat death point of the system.
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Frg. 3. Heat conduction between equal amounts
of the same substance at initial temperatures
0 and 100°C.

As our last example let us take the irrevers-
ible Joule expansion of an ideal gas. Our system
consists of an insulated cylinder with piston
and volume V,,=2V. The n mol of ideal
gas are confined in the volume V with the
pressure p and the temperature 7. We perform
an irreversible expansion 8V, whereby (experi-
mentally) the temperature remains constant.
We have

T8 pzoa =PV (22)

The absolute exergy before the expansion is
found by making a reversible, adiabatic ex-
pansion of the gas from V to V,,=2V. We
obtain

T o(before) =T-2—R/Cv (23)
and
Ez(before) =nC,, {T —T ,(before)} (24)

After the expansion 6V we have for the ener-
getic zero-point

2V \-RiCy _
T (after)=T (m) =
—R[Cy R oV
. 1 padhdh i
T2 [ + .V (25)

The last equation is obtained by Taylor-
expansion of the first. Subtracting the exergy
after the expansion (given by the analogous
equation to (24) for the exergy before, we
obtain for the loss of exergy
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— dEz=nC[T ,(after) — T y(before)] =
oV —R/Cy —R/Cy
nRT A 2 = péV-2 (26)

and by comparison with (22) and (23) we
observe, that eqn. (14) is verified once more.
We might have taken our system to include
a big thermostat surrounding the cylinder
with a temperature 7T'. From the point of view
of the irreversible expansion 6V, we cannot
see any difference, since — as shown by Joule —
no entropy is exchanged with the thermostat.
The energetic zero-points are very different,
however, since they are (2V, T, p/2) before
as well as after the infinitesimal expansion.
Eqn. (14) holds for that system as well, and
the increase in internal energy of the energetic
zero-point of the gas cylinder plus the ther-
mostat is exactly T 38,04 as required by egn. (13)

RELATIVE EXERGY FOR STATIONARY
FLOW SYSTEMS

To join the exergy concept developed here
and in the previous paper with the exergy
concept already in use in power and refrigera-
tion technology ® and in irreversible thermo-
dynamics,® we consider the stationary flow
system visualized in Fig. 4. We shall denote
specific quantities (quantities per kg mass)
by lower case letters. Thus, w is the useful
work (e.g. electric power) exported from the
system to the surroundings per kg mass passed
through the flow system. The corresponding
“heat’’ from the surroundings to the system
is denoted ¢ and is given by

qg=— TenvA‘?env (27)
w
PRI L Y v
v iR R :
— Yy T ! v, —s
] : 1 2 : '
9= ~lenv™ Senv

Teny, Penv

Fig. 4. Generalised Joule-Thomson experiment.
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where ‘“env’’ stands for environment. The
system in Fig. 4 is subdivided into three
systems: (I) The flowing mass of incoming
and outgoing streams + the more or less
complex machinery encircled by the broken
line. This system follows a specific amount of
mass of “fuel’” and “smoke’” during passage.
(II) The surrounding flowing mass. (III) The
environments.

We now pass on to energy and entropy
balances for the three subsystems in various
contexts. For the environment we have for
the change in internal energy per kg mass
passed

deeyy = der=Teny ASeny+w=—g+w (28)

The corresponding change in the surrounding
flowing mass is

deyy=(—p1)v1—(—D3)vs (29)

since the only changes in quantities are the
neutral transports of specific volumes between
System I and System II. Due to the conserva-
tion of energy we have

dey=ey—e,= — dey— deyy =9 —w— psvs + Py,
(30)

That is — with the usual definition of the
enthalpy 2 — we have

(31)

It should be remarked, that in the classical
Joule-Thomson experiment, where a real gas
is forced through a porous plug, ¢g=w=0 and
the process is going on at constant enthalpy.

We shall now carry on a calculation of the
specific exergy ex, of the incoming stream
relative to the surrounding temperature T,
and pressure p.,,. We let all the internal proces-
ses, e.g. chemical reactions, come to equi-
librium extracting the maximum work by
reversible processes. If the temperature and
the pressure in the final state are different from
(Tenys Denv) We move entropy and volume
reversibly between the system and the environ-
ment until temperature and pressure have
been equalized. The outgoing stream is now
reduced to a relative exergy ex;=0 at Ty=T,,
and p,=p,, and the total work delivered
w=ex,. This kind of exergy is called relative,
since it calls for an arbitrary point of reference

w=g—hy+h,

(Tenvs Peny) 8nd since it does not account for
the additional exergy which could be extracted
by equalizing the chemical potentials in the
outgoing stream and in the environment by
mass transfer (exergy of chemical pollution of
the environment). We obtain (ref. means
values taken at Ty, and Peny)

w=exy=hy—hees+9=h1— et — Teny 48eny (32)

Since

A8y =8t — 8, (33)
and

As;;=0 (34)

and entropy is conserved in reversible processes,
we obtain

ASeny= — (8res—81) (35)
and
€23 =hy — hres + Teny(8ret — 1) (36)

In a process where the maximum work is not
extracted we have not ex,=0 but ez, is given
by a formula analogous to (36). Thus, generally,
we have for the change in specific relative
exergy

el Aex1=exl—-ex,= —Ahl‘l'TenvAsI (37)
The loss of relative exergy is given by
Loss of relative exergy = — dex;—w (38)

Using (37) for the change in exergy and (31) for
the work we obtain

Exergy 1088 = Tepy( 481 + 48eny) = Teny48pr0a (39)

This formula is the analogue of the expression
(14) for the loss in absolute exergy. The differ-
ence is, that while the temperature T, in eqn.
(14) is endogeneously determined by the
finite capacities of the isolated energetic system,
the environment reference temperature in (39)
is just arbitrarily chosen, and the loss in
relative exergy is not the complete loss in
absolute exergy in the complete energetic
universe, since the “pollution exergy’’ has not
been accounted for.
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