Vibrational Spectra of the Tris(1,2-ethanediamine)rhodium(III) Cation. I. Normal Coordinate Analysis of the Parent Compound, Three Deuterated, and Four ¹⁵N Substituted Species*

G. BORCH.ª P. H. NIELSEN b and P. KLÆBOE c

^a Chemistry Department A, The Technical University of Denmark, DK-2800 Lyngby, Denmark, ^b Chemical Laboratory II, The H.C. Ørsted Institute, DK-2100 Copenhagen, Denmark and ^c Department of Chemistry, University of Oslo, Oslo 3, Norway.

A normal coordinate analysis of the tris(1,2ethanediamine)-rhodium(III) cation, the N- d_{12} , C- d_{12} and N,C- d_{24} deuterated, and the four corresponding ¹⁸N substituted species has been accomplished as a 37 body problem (including all atoms). The complex with the three chiral five-membered rings in the more stable δ conformation and the same absolute configuration Λ as in $(+)_{589}$ -[Co(en)₃]³⁺ was selected for the analysis among the four possible combinations of Δ,Λ absolute configuration with δ,Λ ring conformation; resulting in D_3 symmetry of the complex ion. By fitting 38 force constants in the GVFF (General Valence Force Field) approximation to reproduce more than 500 observed frequencies, the normal modes of vibration for the observed bands can be described in terms of the potential energy distribution (PED) between the symmetry coordinates. The force field and vibrational modes related to the Rh-N bonds and N-Rh-N angles are discussed in some detail.

A large amount of data has been collected on the vibrational spectra of metal chelates of 1,2-ethanediamine (en). However, the interpretation of these results is still very unsatisfactory and band assignments and interpretations are usually made without any assistance from normal coordinate calculations. A partial calculation considering only the nine skeletal atoms was performed by Ashley and Torrible ¹ for Ti(en) tetrahalide complexes and used as a basis for assigning the IR spectrum in the region above 300 cm⁻¹. A more detailed cal-

culation has been reported by Omura, Nakagawa and Shimanouchi² for the IR active species of several bis(en) metal chelates, but in this case the force constants were refined to fit the frequencies especially in the region below 600 cm⁻¹. Attempts to give detailed assignments of IR and Raman spectra based upon complete normal coordinate calculations have, to our knowledge, not been published.

In the present paper the results of a complete normal coordinate treatment of this ion and seven isotopically labelled species are discussed with special emphasis on the force constants and the vibrational modes involving the central part of the complex compounds. The IR and Raman spectra in the solid state and in solution including polarization measurements of the Raman bands of the parent molecule [Rh(en)₃]³⁺ and the three deuterated species will be dealt with in separate papers.³ The shifts observed by ¹⁵N isotopic substitution are also included here. Hence, this is the first of several papers concerning the vibrational characteristics of the [Rh(en)₃]³⁺ cation.

STRUCTURE

By investigation of X-ray powder photographs of active racemates it was shown by Andersen et al.⁴ that $(+)_{589}$ -[Co(en)₃]³⁺ and $(-)_{589}$ -[Rh(en)₂]³⁺ have the same absolute configuration Λ . Since a three-dimensional analysis of $(+)_{589}$ -[Co(en)₃]Cl₃.H₂O⁵ revealed the ligand conformation to be δ , i.e. that the

^{*} Presented in parts at the Nordiske Kemikermøde, Umeå, Sweden, June 1971.

C-C direction within each chelate ring is approximately parallel to the threefold axis of the complex ion (lel arrangement), the same must necessarily be true for the rhodium complex in the solid state. The complex has accordingly the symmetry D_3 with the six nitrogen atoms of the three ligands bonded nearly octahedrally to the central rhodium atom. The present calculations have therefore been based upon a Λ - $(\delta\delta\delta)$, or Λ - lel_3 , model for the $[\mathrm{Rh}(\mathrm{en})_3^{3+}]$ ion.

The Cartesian coordinates were constructed in the following way. The $[Rh(en)_3]^{3+}$ ion was located in a three-dimensional coordinate system with the rhodium atom in origo and with the six nitrogen atoms placed upon the X, Y, and Z axes assuming N-Rh-N angles of 90° . The unknown coordinates were then calculated by a vector analytical method applied to one of the ligands only. Transcription of (x,y,z) coordinates to the trigonal coordinate system (x',y',z') proceeded via the orthonormal transformations

$$x' = (2/3)^{\frac{1}{2}}z - 6^{-\frac{1}{2}}y - 6^{-\frac{1}{2}}x$$
$$y' = -2^{-\frac{1}{2}}y + 2^{-\frac{1}{2}}x$$
$$z' = 3^{-\frac{1}{2}}z + 3^{-\frac{1}{2}}y + 3^{-\frac{1}{2}}x$$

and finally the coordinates obtained (x'y',z') were rotated $\pm 120^{\circ}$ around the Z' axis to give the coordinates of the two other ligands.

The average Rh-N distance in $(+)_{589}$ -tris-[(-)-trans-1,2-cyclohexanediamine]rhodium (III) nitrate trihydrate was found ⁷ to be 2.08 Å. Since the Rh-N bond length was very close to 1.99 Å in both dimethylglyoxime ^{8,9} and ethylenimine ¹⁰ complexes, the rounded value of 2.00 Å was adopted in the present calculation. The values used for the ligand distances and bond angles are mostly standard values: r(N-H)=1.01 Å, r(C-H)=1.09 Å, r(C-C)=1.53 Å, r(C-N)=1.47 Å, $\angle H-N-H=\angle H-C-H=111^\circ$, $\angle Rh-N-C=105^\circ$, $\angle N-C-C=1111^\circ$, $\angle Rh-N-H=115^\circ$, $\angle N-C-H=107^\circ$, $\angle Rh-N-C-C=33^\circ$.

NORMAL COORDINATE ANALYSIS

The normal coordinate analysis was performed as a 37-body problem using Wilson's GF matrix method as treated in the program of Schachtschneider and Snyder.¹¹ The potential

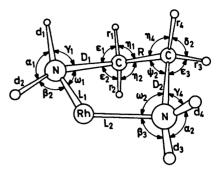


Fig. 1. Internal coordinates of the chelate ring I. Additional coordinates are: Torsion around the Rh-N bonds τ_1 and τ_2 , the N-C bonds π_1 and π_2 , and around the C-C bond Δ . Torsion aound the Rh-N bonds $(\tau_1$ and $\tau_2)$ have been defined as C-N-Rh-N torsion within a chelate ring. Torsion around the N-C bonds $(\pi_1$ and $\pi_2)$ have been defined as Rh-N-C-C torsion, and around the C-C bond (Δ) as N-C-C-N torsion.

function employed was of the GVFF type originally developed for hydrocarbons.¹² extended to molecules containing the X-CH₂-CH₂-X moiety ¹³⁻¹⁶ also present in [Rh(en)₃]³⁺. The internal coordinates of the chelate ring are shown in Fig. 1, while the internal NRhN deformation coordinates are separately given in Fig. 2. The symmetry coordinates listed in Table 1 were derived making use of the D₂ symmetry of the complex. The redundancies

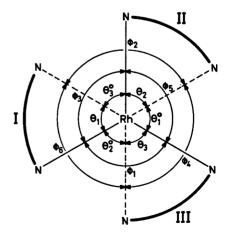


Fig. 2. The internal NRhN deformation coordinates. The numbers I, II, and III refer to the three chelate rings.

Acta Chem. Scand. A 31 (1977) No. 2

Table 1. Symmetry coordinates for the tris(1,2-ethanediamine)Rh(III) cation. The numbers I, II, and III refer to the chelate rings. The symbols used are defined in section (c) of this Table for the chelate ring I and similar expressions are used for the other chelate rings.

```
(a) Chelate rings
Species A,
S_1 - S_{22} = [Sx(I) + Sx(II) + Sx(III)]/\sqrt{3} (x = a, b, c, d, ..., v)
Species A.
S_1 - S_{20} = [Sx'(I) + Sx'(II) + Sx'(III)]/\sqrt{3} (x = a, b, d, e, ..., u)
Species E
S_1 = \frac{2Sa(I) - Sa(II) - Sa(III)}{\sqrt{6}}
                                                                                S_2 = [Sa'(II) \cdot Sa'(III)]/\sqrt{2}
S_a = \frac{[2Sb(I)-Sb(II)-Sb(III)]}{\sqrt{6}}
                                                                                S_4 = [Sb'(II)-Sb'(III)]/\sqrt{2}
S_{\rm s} = [2Se({\rm I}) - Se({\rm II}) - Se({\rm III})]/\sqrt{6}
S_6 = \frac{[2Sd(I)-Sd(II)-Sd(III)]}{\sqrt{6}}
                                                                               S_{\tau} = [Sd'(II) \cdot Sd'(III)]/\sqrt{2}
                                                                                S_{\mathbf{e}} = [Se'(II) - Se'(III)] / \sqrt{2}
S_8 = \frac{[2Se(I)-Se(II)-Se(III)]}{\sqrt{6}}
S_{10} = [2Sf(I) - Sf(II) - Sf(III)]/\sqrt{6}
                                                                                S_{11} = [Sf'(II) - Sf'(III)]/\sqrt{2}
                                                                                S_{13} = [Sg'(II) - Sg(III)]/\sqrt{2}
S_{12} = [2Sg(I) - Sg(II) - Sg(III)]/\sqrt{6}
                                                                                S_{15} = [Sh'(II) - Sh'(III)]/\sqrt{2}
S_{14} = [2Sh(I) - Sh(II) - Sh(III)] / \sqrt{6}
S_{16} = [2Si(I) - Si(II) - Si(III)] / \sqrt{6}
                                                                                S_{17} = [Si'(II) - Si'(III)]/\sqrt{2}
                                                                                S_{19} = [Sj'(II)-Sj'(III)]/\sqrt{2}
S_{18} = [2Sj(I)-Sj(II)-Sj(III)]/\sqrt{6}
S_{20} = [2Sk(I)-Sk(II)-Sk(III)]/\sqrt{6}
                                                                                S_{21} = [Sk'(II) - Sk'(III)]/\sqrt{2}
S_{22} = [2S1(I) - S1(II) - S1(III)] / \sqrt{6}
                                                                                S_{23} = [SI'(II) - SI'(III)]/\sqrt{2}
S_{24} = [Sm(II) - Sm(III)] / \sqrt{2}
                                                                                S_{25} = [2Sm'(I)-Sm'(II)-Sm'(III)]/\sqrt{6}
S_{26} = [2Sn(I) - Sn(II) - Sn(III)] / \sqrt{6}
                                                                                S_{27} = [Sn'(II) - Sn'(III)]/\sqrt{2}
S_{28} = [So(II)-So(III)]/\sqrt{2}
                                                                                S_{29} = [2So'(I)-So'(II)-So'(III)]/\sqrt{6}
S_{30} = [2Sp(I)-Sp(II)-Sp(III)]/\sqrt{6}
                                                                                S_{31} = [Sp'(II) \cdot Sp'(III)]/\sqrt{2}
S_{32} = (Sq(II)-Sq(III))/\sqrt{2}
                                                                                S_{33} = [2Sq'(I)-Sq'(II)-Sq'(III)]/\sqrt{6}
S_{34} = [2Sr(I)-Sr(II)-Sr(III)]/\sqrt{6}
                                                                               S_{35} = [Sr'(II) \cdot Sr'(III)]/\sqrt{2}
S_{36} = [S_8(II) - S_8(III)]/\sqrt{2}
                                                                               S_{37} = [2Ss'(I)-Ss'(II)-Ss'(III)]/\sqrt{6}
S_{38} = [2St(I)-St(II)-St(III)]/\sqrt{6}
                                                                                S_{39} = [St'(II) - St'(III)]/\sqrt{2}
S_{40} = [2Su(I)-Su(II)-Su(III)]/\sqrt{6}
                                                                                S_{41} = [Su'(II) - Su'(III)] / \sqrt{2}
S_{49} = [2Sv(I)-Sv(II)-Sv(III)]/\sqrt{6}
(b) Symmetry coordinates involving NRhN deformation (δNRhN)
Species A<sub>1</sub>
S_{23} = [\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6]/\sqrt{6}
S_{24} = [\theta_1 + \theta_2 + \theta_3 + \theta_1^{\circ} + \theta_2^{\circ} + \theta_3^{\circ}]/\sqrt{6}
S_{25} = [\theta_1 + \theta_2 + \theta_3 - \theta_1^{\circ} - \theta_2^{\circ} - \theta_2^{\circ}]/\sqrt{6}
Species A.
S_{21} = [\phi_1 - \phi_2 + \phi_3 - \phi_4 + \phi_6 - \phi_6]/\sqrt{6}
```

Acta Chem. Scand. A 31 (1977) No. 2

 $S_{43} = [2\phi_1 + 2\phi_2 - \phi_3 - \phi_4 - \phi_5 - \phi_6]/\sqrt{12}$

 $S_{45} = [2\theta_1 - \theta_2 - \theta_3 + 2\theta_1^{\circ} - \theta_2^{\circ} - \theta_3^{\circ}]/\sqrt{12}$

 $S_{44} = [\phi_3 - \phi_4 + \phi_5 - \phi_6]/2$

 $S_{46} = [\theta_2 - \theta_3 + \theta_2^{\circ} - \theta_3^{\circ}]/2$

Species E

Table 1. Continued.

(c) Local symmetry coordinates of the chelate ring I

Symmetry coordinate	Symbol	Description
$Sa(I) = (L_1 + L_2)/\sqrt{2}$	$ u_{ m s}{ m Rh}{ m N}$	Symm. RhN stretch
$Sa'(I) = (L_1 - L_2)/\sqrt{2}$	$v_{ m as} m RhN$	Asym. RhN stretch
$Sb(I) = (D_1 + D_2)/\sqrt{2}$	$v_{\rm s}^{-}$ CN	Symm. CN stretch
$Sb'(I) = (D_1 - D_2)/\sqrt{2}$	$ u_{\rm as}{ m CN}$	Asymm. CN stretch
Sc(I) = R	$v\overline{C}C$	CC stretch
$Sd(I) = (d_1 + d_2 + d_3 + d_4)/2$	$ u_{ m s}{ m NH}$	Symm. NH stretch
$Sd'(I) = (d_1 + d_2 - d_3 - d_4)/2$	$v_{\rm s}{ m NH}$	Symm. NH stretch
$Se(I) = (d_1 - d_2 + d_3 - d_4)/2$	$v_{ m as}{ m NH}$	Asym. NH stretch
$Se'(I) = (d_1 - d_2 - d_3 + d_4)/2$	$v_{\rm as}{ m NH}$	Asym. NH stretch
$Sf(I) = (r_1 + r_2 + r_3 + r_4)/2$	$v_{ m s}{ m CH}$	Symm. CH stretch
$Sf'(I) = (r_1 + r_2 - r_3 - r_4)/2$	$v_{\rm s}{ m CH}$	Symm. CH stretch
$Sg(I) = (r_1 - r_2 + r_3 - r_4)/2$	$v_{ m as}{ m CH}$	Asym. CH stretch
$Sg'(I) = (r_1 - r_2 - r_3 + r_4)/2$	$v_{\rm as}^{\rm CH}$	Asym. CH stretch
$Sh(I) = (\omega_1 + \omega_2)/\sqrt{2}$	$\delta_{ m s} { m RhNC}$	Symm. RhNC deformation
$Sh'(I) = (\omega_1 - \omega_2)/\sqrt{2}$	$\delta_{ m as} { m RhNC}$	Asym. RhNC deformation
$Si(I) = (\psi_1 + \psi_2)/\sqrt{2}$	$\delta_{ m s}{ m NCC}$	Symm. NCC deformation
$Si'(I) = (\psi_1 - \psi_2)/\sqrt{2}$	$\delta_{ m as}{ m NCC}$	Asym. NCC deformation
$Sj(I) = (\alpha_1 + \alpha_2)/\sqrt{2}$	$\delta \mathrm{NH_2}$	NH ₂ deformation
$Sj'(I) = (\alpha_1 - \alpha_2)/\sqrt{2}$	$\delta \mathrm{NH_2}$	NH ₂ deformation
$Sk(I) = (\delta_1 + \delta_2)/\sqrt{2}$	$\delta \mathrm{CH_2}$	CH ₂ deformation
$S\mathbf{k}'(\mathbf{I}) = (\delta_1 - \delta_2)/\sqrt{2}$	$\delta \mathrm{CH_2}$	CH ₂ deformation
$S1(I) = (\beta_1 + \beta_2 + \beta_3 + \beta_4)/2$	$[Sl(I) + Sn(I)]/\sqrt{2} = \delta NH_2$	NH ₂ deformation
$SI'(I) = (\beta_1 + \beta_2 - \beta_3 - \beta_4)/2$	$[Sl'(I) + Sn'(I)]/\sqrt{2} = \delta NH_2$	NH ₂ deformation
$Sm(I) = (\beta_1 - \beta_2 + \beta_3 - \beta_4)/2$	$[Sm(I) + So(I)]/\sqrt{2} = \varrho NH_2$	NH ₂ rock
$Sm'(I) = (\beta_1 - \beta_2 - \beta_3 + \beta_4)/2$	$[Sm'(I) + So'(I)]/\sqrt{2} = \varrho NH_2$	NH ₂ rock
$Sn(I) = (\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4)/2$	$[Sl(I) - Sn(I)]/\sqrt{2} = \omega NH_2$	NH ₂ wag
$Sn'(I) = (\gamma_1 + \gamma_2 - \gamma_3 - \gamma_4)/2$	$[SI'(I) - Sn'(I)]/\sqrt{2} = \omega NH_2$	NH ₂ wag
$So(I) = (\gamma_1 - \gamma_2 + \gamma_3 - \gamma_4)/2$	$[Sm(I) - So(I)]/\sqrt{2} = tNH_2$	NH ₂ twist
$So'(I) = (\gamma_1 - \gamma_2 - \gamma_3 + \gamma_4)/2$	$[Sm'(I) - So'(I)]/\sqrt{2} = tNH_2$	NH ₂ twist
$Sp(I) = (\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4)/2$	$[Sp(I) + Sr(I)]/\sqrt{2} = \delta CH_2$	CH ₂ deformation
$Sp'(I) = (\varepsilon_1 + \varepsilon_2 - \varepsilon_3 - \varepsilon_4)/2$	$[Sp'(I) + Sr'(I)]/\sqrt{2} = \delta CH_2$	CH ₂ deformation
$Sq(I) = (\varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4)/2$	$(Sq(I) + Ss(I)) / \sqrt{2} = \varrho CH_2$	CH ₂ rock
$Sq'(I) = (\varepsilon_1 - \varepsilon_2 - \varepsilon_3 + \varepsilon_4)/2$	$[Sq'(I) + Ss'(I)]/\sqrt{2} = \varrho CH_2$	CH ₂ rock
$Sr(I) = (\eta_1 + \eta_2 + \eta_3 + \eta_4)/2$	$[Sp(I) - Sr(I)]/\sqrt{2} = \omega CH_2$	CH ₂ wag
$Sr'(I) = (\eta_1 + \eta_2 - \eta_3 - \eta_4/2)$	$[Sp'(I) - Sr'(I)]/\sqrt{2} = \omega CH_2$	CH ₂ wag
$Ss(I) = (\eta_1 - \eta_2 + \eta_3 - \eta_4)/2$	$[Sq(I) - Ss(I)]/\sqrt{2} = tCH_2$	CH ₂ twist
$Ss'(I) = (\eta_1 - \eta_2 - \eta_3 + \eta_4)/2$	$[Sq'(I) - Ss'(I)]/\sqrt{2} = tCH_2$	CH ₂ twist
$St(I) = (\tau_1 + \tau_2)/\sqrt{2}$	$ au_{ m s}{ m RhN}$	Symm. RhH torsion
$St'(I) = (\tau_1 - \tau_2)/\sqrt{2}$	$ au_{ m as} m RhN$	Asym. RhN torsion
$Su(I) = (\pi_1 + \pi_2)/\sqrt{2}$	$ au_{ m s}{ m NC}$	Symm. NC torsion
$S\mathbf{u}'(\mathbf{I}) = (\pi_1 - \pi_2)/\sqrt{2}$	$ au_{ m as}{ m NC}$	Asym. NC torsion
$Sv(I) = \Delta$	$ au_{ m cc}$	CC torsion

Table 2. Valence force constants for the [Rh(en)₃]³⁺ cation.

Force type	Constants symbol	Group	Coordinate(s) involved	Atoms common to interacting coordinates	Value ^a Initial	Final
Stretch	K_{τ}	CH ₂	C-H	_	4.55 ^b	4.706
	$K_{\mathbf{d}}^{-}$	NH_2	N-H	-	6.42 °	5.669
	$K_{\mathbf{R}}$	CH ₂ -CH ₂	$\mathbf{C} - \mathbf{C}$	-	4.39^{b}	3.581
	$K_{\mathbf{D}}^{-1}$	$CH_2 - NH_2$	C-N	_	4.97 ^c	4.692
	$K_{\mathbf{L}_{i}}^{-}$	RhN_6	Rh-N		2.31^d	1.607
Stretch-	$F_{\mathbf{r}}^{-}$	CH ₂	С-н, с-н	C	0.01^{b}	0.0398
stretch	$F_{\mathbf{d}}$	NH ₂	N-H, $N-H$	N	00	0.0307
	$F_{ m RD}$	$CH_2 - CH_2 - NH_2$	C-C, $C-N$	C	0.10^{b}	0.391
	F _{I,I,} F' _{I,I,}	RhN ₆	Rh-N, Rh-N, cis	Rh	0.05^d	0.250
	F''I,I,	RhN ₆	Rh-N, Rh-N, trans	Rh	~ ~~h	-0.0868
\mathbf{Bend}	H_{δ}	CH ₂	<hch< td=""><td>****</td><td>0.55^b</td><td>0.554</td></hch<>	****	0.55^b	0.554
	H_{α}	NH ₂	<hnh< td=""><td></td><td>0.64°</td><td>0.547</td></hnh<>		0.64°	0.547
	H_{η}	CH ₂ -CH ₂	<hcc< td=""><td>_</td><td>0.656^{b}</td><td>0.651</td></hcc<>	_	0.656^{b}	0.651
	H_{8}	CH ₂ -NH ₂	<hcn< td=""><td>-</td><td>0.656^b</td><td>0.732</td></hcn<>	-	0.656 ^b	0.732
	H_{γ}	CH ₂ -NH ₂	<cnh< td=""><td>_</td><td>0.578^{c}</td><td>0.692</td></cnh<>	_	0.578^{c}	0.692
	H_{ψ}	CH ₂ -CH ₂ -NH ₂	<ccn< td=""><td>_</td><td>1.13^b 0.19¢</td><td>$1.087 \\ 0.458$</td></ccn<>	_	1.13 ^b 0.19¢	$1.087 \\ 0.458$
	$H_{oldsymbol{\omega}}$	$Rh-NH_2$ $Rh-NH_2-CH_2$	<hnrh <rhnc< td=""><td>_</td><td>$0.19^{\circ} \\ 0.77^{f}$</td><td>0.458</td></rhnc<></hnrh 	_	$0.19^{\circ} \\ 0.77^{f}$	0.458
	$H_{\phi} = H_{\theta}$	RhN _s	<nrhn< td=""><td>_</td><td>0.20</td><td>1.100</td></nrhn<>	_	0.20	1.100
Stretch	$F_{\mathbf{R}^{\boldsymbol{\eta}}}$	CH ₂ -CH ₂	C-C, <hcc< td=""><td>C-C</td><td>0.328^b</td><td>0.301</td></hcc<>	C-C	0.328^b	0.301
bend	$F_{\mathbf{R}oldsymbol{arepsilon}}^{\mathbf{F}_{\mathbf{R}oldsymbol{\eta}}}$	$CH_2-CH_2-NH_2$	C-C, <hcn< td=""><td>C</td><td>0.328 0.079^{b}</td><td>0.101</td></hcn<>	C	0.328 0.079^{b}	0.101
benu	$F_{\mathbf{R}oldsymbol{arphi}}^{\mathbf{R}oldsymbol{arepsilon}}$	$CH_2-CH_2-NH_2$	C-C, $< CCN$	C-C	0.42^{b}	0.250
	$F_{\mathrm{D}s}^{\mathrm{R}\Psi}$	$CH_2 - NH_2$	C-N, $<$ HCN	C-N	0.36 ¢	0.473
	$F_{\mathrm{D}\gamma}^{\mathrm{D}s}$	$CH_2 - NH_2$	C-N, $C-N0.16¢0.385$	C-N	0.16¢	0.385
	$F_{\mathrm{D}\eta}^{\mathrm{D}\gamma}$	CH ₂ -CH ₂ -NH ₂	C-N, <hcc< td=""><td>č</td><td></td><td>0.141</td></hcc<>	č		0.141
	$F_{\mathrm{D}\Psi}^{\mathrm{D}\eta}$	CH ₂ -CH ₂ -NH ₂	C-N, <ccn< td=""><td>$\tilde{\mathbf{c}} - \mathbf{N}$</td><td>$0.42^{b}$</td><td>0.466</td></ccn<>	$\tilde{\mathbf{c}} - \mathbf{N}$	0.42^{b}	0.466
	$F_{\mathbf{L}\omega}$	Rh-NH ₂ -CH ₂	Rh-N, <rhnc< td=""><td>Rh-N</td><td>*****</td><td>0.216</td></rhnc<>	Rh-N	*****	0.216
	$F_{\mathrm{D}\boldsymbol{\omega}}^{\mathrm{L}\boldsymbol{\omega}}$	Rh-NH ₂ -CH ₂	C-N, <rhnc< td=""><td>C-N</td><td></td><td>0.0984</td></rhnc<>	C-N		0.0984
Bend-	$F_{\eta}^{D^{-}}$	CH ₂ -C	<hcc, <hcc<="" td=""><td>C-C</td><td>-0.021^{b}</td><td>-0.0324</td></hcc,>	C-C	-0.021^{b}	-0.0324
bend	F_{s}	CH ₂ -N	<hcn, <hcn<="" td=""><td>C-N</td><td>-0.031^{c}</td><td>-0.0218</td></hcn,>	C-N	-0.031^{c}	-0.0218
	F_{γ}	NH ₂ -C	<hnc, <hnc<="" td=""><td>C-N</td><td>-0.05^{c}</td><td>-0.128</td></hnc,>	C-N	-0.05^{c}	-0.128
	$\dot{F_{m{eta}}}$	$NH_2 - Rh$	<hnrh, <hnrh<="" td=""><td>N-Rh</td><td></td><td>0.0856</td></hnrh,>	N-Rh		0.0856
	$F_{\phi} = F_{\theta}$	$\mathrm{Rh} ar{\mathrm{N}}_{6}$	<nrhn, <nrhn<="" td=""><td>Rh-N</td><td></td><td>-0.200</td></nrhn,>	Rh-N		-0.200
	·	· ·	at right angles			
	$F'_{\phi} = F'_{\theta}$	RhN_{6}	<nrhn, <nrhn<="" td=""><td>$\mathbf{R}\mathbf{h} - \mathbf{N}$</td><td></td><td>0.200</td></nrhn,>	$\mathbf{R}\mathbf{h} - \mathbf{N}$		0.200
	$f_{\eta}{}^{t}$	CH ₂ -CH ₂	<hcc, <cch<="" td=""><td>C-C</td><td>0.127^{b}</td><td>0.0996</td></hcc,>	C-C	0.127^{b}	0.0996
Torsion	H_{τ}	RhN _a	Rh-N	_	5,	0.205
	H_{π}	CH ₂ -NH ₂	C-N	_	0.058°	0.060
	H_{Λ}	CH ₂ -CH ₂	$\ddot{\mathbf{c}} - \ddot{\mathbf{c}}$	_	0.058¢	0.127

^aIn units of mdyn/Å (stretch constants)mdyn/rad (stretch-bend interaction constants) and mdyn Å/(rad)² (bending and torsion constants). ^b Refs. 12 and 17. ^c Ref. 18. ^d Ref. 19. ^eRef. 2. ^f Ref. 20.

 $7A_1+4A_2+11E$ included here were in the calculations eliminated directly by the program. The initial force constants, based on values for similar molecules $^{12,17-20}$ are listed in Table 2 for comparison with the final GVF constants. The calculated frequencies are given in Table 3, which also includes an approximate description of the vibrational modes based upon the PED (potential energy distribution) of each vibration among the symmetry coordinates. The PED

among the force constants, $K_h J_{\lambda h}/\lambda^{11}$ was also calculated to estimate the significant force constants for each vibration, but are not listed in order to save space.

Treatment of $[Rh(en)_3]^{s+}$ under the point group D_3 reduces the 105 normal modes of vibration to the irreducible representation $\Gamma = 18A_1(R) + 17A_2(IR) + 35E(R,IR)$, where (R) and (IR) indicate the Raman and infrared active modes, respectively. The eight isotopic

Acta Chem. Scand. A 31 (1977) No. 2

species considered here accordingly give us potentially $144\ A_1$, $136\ A_2$, and $280\ E$ frequencies, or a total of 560 frequencies which we have tried to fit to the minimum number of force constants in an internally consistent approximation.

Method of calculation. Since the experimental Raman data included semiquantitative depolarization ratios for many bands, it was decided to perform exploratory calculations of the A_1 block separately and obtain a fit of the calculated frequencies to those of the polarized Raman bands. The force field obtained was then transferred to species A_2 and E after having properly utilized the molecular symmetry, and a provisional assignment of approximately one half of the 560 fundamentals made. Least squares refinements of each species separately disclosed the presence of inconsistencies which led to the introduction of new interaction force constants and revision of the assigned fundamentals. An examination of the Jacobian elements indicated that several of these were very poorly determined while others were essential to insure satisfactory convergence. The following constraints were now made to the calculations. (i) The force constants were not allowed to deviate beyond some fixed limits found valid for similar molecules (vide infra). (ii) The final force field should as far as possible be truly convergent, i.e. obtained by allowing all force constants to vary simultaneously. (iii) The standard error (excluding NH/ND and CH/CD stretching) for each species (A_1,A_2,E) in any of the four isotopic molecules should not exceed a fixed limit (1 % intended). (iv) The number of force constants should be held as low as possible. With these constraints it was possible to assign almost all fundamentals and explain the significant bands in the observed spectra, by using a 38-parameter GVFF.

Force field related to RhN_6 . The approach developed here is based mainly upon the general considerations by Claassen ²¹ to molecules of formula XY₆ and the results for hexamine complexes derived from Ru, Rh, Ir, and Os ¹⁹ and Ni.²² The vibrations involving Rh-N stretching could only be fitted satisfactorily by including the three force constants K_L (Rh-N stretching), F_{LL} (bond with a bond at right angles to it), and F'_{LL} (bond with opposite

bond). No improvement was obtained by introducing different interaction force constants F_{LL} for interactions within a chelate ring and interaction between Rh-N bonds of two different chelate rings. The interaction force constants $F_{L\theta}$ and $F_{L\theta}$ were found to be small and omitted in the final calculations.

The force constants for N-Rh-N deformation were initially introduced with different values for deformation within a chelate ring and deformation between two rings. This was considered important since all equilibrium values for N-Rh-N angles were put equal to 90° which is a reasonable but nevertheless conjectural value, being at variance with an Λ - $(\lambda,\lambda,\lambda)$ (ob₃) isomer ⁷ of the $|Rh(-chxn)_3|^{3+}$ cation. However, as the calculations proceeded it became clear that this distinction was not warranted and accordingly the constraint that all $H_{\theta} = H_{\phi}$ was introduced. To be consistent the interaction constants were constrained in the same way, i.e. all interactions involving deformation of the RhN, part of the chelate were considered equal whether the deformation occurs within a chelate ring or between two chelate rings. The force constants H_{θ} , F_{θ} , and F'_{θ} were now determined by trial and error. These constraints ensured convergence of the remaining force field (vide supra). The standard error of the final set did not exceed 1.1 % for each species (A_1,A_2,E) in any of the eight compounds.

The description of the low frequency modes in terms of PED on symmetry coordinates were not sufficient for an understanding of the vibrational spectrum of $[Rh(en)_s]^{s+}$ in this region. Accordingly, we finally calculated the elements of the transformation matrix L_x between the Cartesian displacement vector X and the normal coordinate vector Q.

RESULTS AND DISCUSSION

Some features considered to be of general interest will be pointed out from the results of the normal coordinate analysis. Nevertheless, in the following discussion it should be kept in mind that (i) the experimental frequencies used are not unambiguously classified to their species from the Raman polarization ratios and (ii) certain constraints have been imposed on the force field. Undoubtedly, these sources

Acta Chem. Scand. A 31 (1977) No. 2

of error are only partly counterbalanced by attempting alternative assignments of fundamentals in all cases of reasonable doubt and systematic attempts to evaluate the significance of the force field during the calculations as discussed above.

Potential constants. Let us compare the values of the initial and the final valence force constants listed in the last two columns of Table 2. The agreement is very satisfactory for force constants related to the ethylenediamine ligand provided allowance is made for the somewhat larger variation observed for interaction force constants than for pure stretch and bending constants. Appreciable changes are noted for some of the force constants involving the amino groups (e.g. K_d, H_α and F_γ), but this is easily understandable as a result of the coordination to Rh. The changes in K_R and K_D are mainly the result of the increase in K_{RD} following complex formation. From the overall pattern we may conclude this part of the force field to be essentially comparable to that of similar molecules.

Very similar changes have been observed for the Urey-Bradley force constants of bis(en) metal chelates ³ compared with those found for unchelated aliphatic amines. ¹⁰ Thus, for example, the value of the N-H stretching force constant was found to decrease from 6.3 mdyn/Å in amines to ca. 5.7 mdyn/Å in chelated 1,2-ethanediamine. In the GVFF developed here, $K_{\rm D}$ decreased from 6.42 mdyn/Å in aliphatic amines to 5.669 mdyn/Å in [Rh(en)₈]³⁺ in complete harmony. This behaviour is hardly coincidental but rather reflects a mutual consistence between the present and previous calculations.

An evaluation of the force field related to the central part of the $[Rh(en)_s]^{s+}$ ion is much more difficult, since data suitable for comparison have not been reported. The differences between initial and final GVF constants (Table 2) for the RhN_6 group are therefore largely due to an unprecedented choice of the initial value rather than real discrepancies. From an assignment of five fundamentals for $[Rh(NH_3)_6]$ -Cl₃ in the low frequency region, assuming O_h symmetry and treating the NH_3 molecules as single masses, Griffith ¹⁹ calculated the force constant for Rh-N stretching, K_L , to be 2.3-2.5 mdyn/Å and the interaction force

constant for two Rh-N cis bonds, FLL, to be 0.05 mdyn/Å. We have attempted to evaluate the force field in more detail using the GVF expressions given by Claassen 21 with suitable approximations, but the derived force constants have in many cases complex solutions and are very dependent on the details of the sophistication. Such calculations have been successfully carried out by Müller et al.22 for the [Ni(NH₈)₆]²⁺ ion indicating values of 0.87, 0.12, and 0.00-0.01 mdyn/Å for Ni – N stretch, cis Ni-N and trans Ni-N stretch-stretch interactions, respectively. The values obtained here for K_{L} , K_{LL} , and F'_{LL} of 1.607, 0.250, and -0.0868 mdyn/Å are considered quite reliable since they depend heavily upon the assignment of the fundamentals involving Rh-N stretching which in fact are some of those most reliable in the experimental material (cf. Schmidt and Müller 23).

From these results we conclude that $K_{\rm L}$ decreases somewhat from $[{\rm Rh}({\rm NH_3})_{\rm e}]^{3+}$ to $[{\rm Rh}({\rm en})_{\rm s}]^{3+}$ but this trend does not necessarily reflect a weaker bond in the latter compound but may be due to an erroneous choice of the ${\rm Rh}-{\rm N}$ bond length in our calculations. The value of $F_{\rm LL}$ appears to increase to the fivefold value on changing the ligand from ${\rm NH_3}$ to 1,2-ethanediamine, but if we consider instead the ratio $K_{\rm L}/F_{\rm LL}$, it compares favourably with $[{\rm Ni}({\rm NH_3})_{\rm s}]^{2+}$. In short, the values are not unreasonable, but unsatisfactory for deductions regarding the detailed nature of the bonds in the complex.

The GVF constant for N-Rh-N deformation was found to be 1.10 mdyn A/(rad)2, considerably higher than the corresponding values for [Ni(NH₃)₆]²⁺²² and for dimethylglyoxime chelates 19 which are in the range 0.10-0.30 mdyn Å/(rad)². However, in the UBFF approximation the appropriate range for 1,2-ethanediamine chelates is 0.16-0.40 mdvn/A (in-plane bending) and 0.53-0.90mdyn Å (out-of-plane bending) 2 suggesting the value obtained here to be significant. The numerical values of the interaction force constants F_{ϕ} and F'_{ϕ} and of the force constant for Rh-N torsion are also considerably higher than expected from other complex compounds 22 and suggest a considerable stiffening of [Rh-(en)₃]³⁺. The high values of the bending force constants H_{β} and H_{ω} and of the interaction

Table 3. Calculated (vale, cm⁻¹) and observed (vobs, cm⁻¹) fundamentals and main potential energy distribution (PED, %) for [Rh(en)₃]³⁺ from a 38-

[Rh(en) ₃] ²⁺ Species 1 and No.]s+ Vcalc	$v_{ m obs}^c$	15N Cal	shift ^d c obs	PED*	N-d ₁	$ ext{N-}d_{12}[ext{Rh(en)}_3]^3+ ext{No.} extit{valc}^b extit{vobs}^b,$	n) ₃] ³⁺ Vobs	15N g calc		C-d ₁₂ [No.	$^{\mathrm{C-}d_{12}}_{12}[\mathrm{Rh}(\mathrm{en})_{3}]^{\mathrm{s}+}$ No. $^{\prime}_{\mathrm{calc}}$ $^{\prime}_{\mathrm{obs}}$	$^{3]^3+}_{ m Vobs}^c$	¹⁵ N shift ^d calc obs		$N,C-d_{24}[Rh(en)_3]^3$ No. ν_{calc}^b ν_{obs}^c	$\int_{0}^{\infty} h(\mathrm{en})_{3}^{13}$	+	15N shift ^d cale obs
$A_1 \nu_1 \\ \nu_2 \nu_3 \nu_4 \nu_4 \nu_5 \nu_6 \nu_6 $	3235 3175	$3245 \\ 3150$	10	10	$m{v_{as}}{ m NH}(100)$	% %	2398 2306	2397 2339	14 9	919	ر د رو	3235 3175	3245 3192	10	0 %	2399	9 2391 3 2330	1 15 0 9	00 xC
. 2			0	9	vacCH(99)	" 2"	2973	2972	0	101		2234	2238	0	. 4	223			
, 7			0	Ø	v _s CH(99)	2,	2911	2907	0	01	. ~	2128	2155	0	3	2128			
7,8			ō	က	$\delta \mathrm{NH_2(97)}$	%	1189	1187	9	10	20	1609	1605	10	3	120		8	10
7 8			0	67	$\delta \text{CH}_2(100)$	ų s	1472	1469	0	က	20	1069	1069	က	3	, 108		0	0
2			67	0	ω CH ₂ (73)	۶,	1352	1353	-			296	950	က		v ₁₁ 84(80	-
%			-	က	tCH ₂ (62),tNH ₂ (32)	7,	1318	1307	01			927	925	~í ∞	•	ν ₁₀ 92ξ		9	4
y,			က	က	tNH ₂ (46), tCH ₂ (37)	v_{13}	845	844	0	83	8,	1309	1315	o en	•				12
ν_{10}			67	က	$\omega_{ m NH_2(72)}$	711	926	970	=			1258	1258			y , 1039		_	œ
ν_{11}			14	9	vCN(80), vCC(13)	v_{10}	1055	1057	9			1110	1103	∞	2			6	O
ν_{12}			က	9	$\rho^{\text{CH}_2(53)}, \nu^{\text{CC}(16)}$	~	1106	1106	က			885	892						0
ν_{13}			4	9	ν CC(49), ν CN(20)	v_{13}	190	808	0	က		773	771	63	4	v_{13} 74]		1	_
7,14			4		$\rho NH_2(87)$	7.4	592	282	9	-		716	719	83	0				7
7,15			14	12	$\nu_{\rm c} { m RhN}(68)$	7,	504	512	12			543	536	_	l4 ν			2 10	∞
7,18			ĸĢ	7	δNRhN(31), δ ₅ NCC(19)	7.18	278	273	81		7.	287	285	بر		266	3 260		23
V17	272	272	က	0	τCC(15) δNRhN(36), δ _s RhNC	7 17	259	268	83	က	, ₁ ,	256	260	60	2	v ₁₇ 237		4. E	က
			1		$(27), \nu_{\rm s} { m RhN}(12)$	i	,	1			•								
7 18	200	195	গ		δΝRhN(62), τCC(13)	v_{18}	191	183	61	m	γ ₁₈	173	170	-	ಬ ಶ	v_{18} 170	170	- -	-
A_2 ν_{19}	3235	3230	10	30	$\nu_{\rm as}{ m NH}(100)$	γ ₂₁	2397	2397	14	10	7,10	3234	3210	10	0	V. 2397	••	0 14	15
		3145	70		v.NH(100)	7.	2303	2279	_	œ		3174	3170	9	8		٠,	0	4
P21		2964	0		$v_{\rm ss}{ m CH(99)}$, ž	2966	2966	0	0		2214	2225	0	0		٠.	0 9	0
7,83		2890	0		v _s CH(99)	\mathcal{V}_{20}	2909	2905	0	•		2124	2135	0	0		٠.	2	0
¥23		1607	ð	က	$\delta \mathrm{NH_2(97)}$	7,36	1184	1187	9	10		1606	1605	Ö	4			8 0	10
V24		1459	0			7 23	1459	1466	-	0		1065	1066		-	V25 1078	2 1080	0	-
V 25		1330	_	က	<u>_</u>	784	1305	1307	-			886	890	10					က
V26		1305	က	Ö		728	945	926	67	10		1287	1290	ο 1	2	v_{27} 968			∞
V27		1217	0		$tCH_2(59), tNH_2(32)$	725	1254	1270	67			925	925					•	
V ₂₈		1163	4	-	$\omega NH_2(84)$	v_{29}	819	888	01	0		1230	1229	œ	4				7
V 29		1028	11	œ	$\nu_{ m CN(81)}$	727	1039	1038	15			1093	1088	10	4		_	4 10	12
V30		812	4		$\rho_{\rm CH_2(59)}, \rho_{\rm NH_2(26)}$	7 30	791	795	4	10	γ ₈₁	693	694	9	4			3	
V31		785	7	9	ρNH ₂ (58), ρCH ₂ (11)	7,31	655	650	7	-	7,30	169	785	10	2		628	80 FC	10
ν_{3z}		280	10	9)C(35	V ₃₂	532	539	က	4	V ₃₃	510	511	က	es 2			e 0	က
	;	1	•	•	$(15), \varrho_{\rm CH_2}(22)$		9	Ş	•				;	•				,	•
7 ₃₃	441 953	445 940	9 4	4	$v_{\rm as} {\rm KhN}(84)$ - $v_{\rm BhN}(41)$ $v_{\rm SNR} {\rm BhN}(30)$	ر ع	999	431 996	41 c	4 0	88.	949	417	4 6	41 c 9 s	y ₃₃ 413	413	ee ∈ 44. e	4 0
ž 2	111	110	۴ —		SNRhN(55), 7RhN(34)	Z 2	107	113	٥ د	•	# # #	102	106					. .	>
3						8		I I			2	i			,				

15 15 16 17 10 10 10 11 11 11 11 11 11 11	0 4 7 7 7 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
44 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	042890 9 82280
2391 2330 22390 22390 22266 2132 2132 2132 2132 1190 1003 838 1160 1003 893 893 893 893 890 890 803 803 803 803 803 803 803 803 803 80	790 645 670 670 628 468 413 398 328 270 170
2390 2304 2302 2202 2222 2221 2221 2123 1106 1106 1106 1105 843 1155 959 893 894 893 894 893 894 893 894 894 897 897 897 897 897 897 897 897 897 897	788 639 639 651 622 475 420 395 337 270 165 118
77777778837884777778888338	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
$\begin{smallmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	4000 7 2 02880
$\begin{smallmatrix} 0&1&0\\1&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0\\0&0&0&0&0&$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3245 3210 3310 3119 3119 3119 2224 2225 2135 11605 1066 980 980 980 927 1128 890 1126 1126 1126 1126 1126 1126 1126 112	812 596 748 719 630 507 425 392 348 286 170
3232 3174 3173 3174 3173 2226 2212 2123 1606 1067 988 957 988 957 988 9128 1128 1288 893 1227 11261 1288 893 893 893 893 893 893 893 893 893 8	804 600 766 715 637 507 432 400 351 286 170
7	7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0110 110 101 101 101 101 101 101 101 10	2 20 5 11 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111100000000000000000000000000000000000
2397 2339 22339 22339 22972 22965 22905 11187 11474 1467 11385 11352 11352 11362 11363 113	830 7777 587 650 475 424 424 390 333 273 176
2390 2387 2304 2302 2902 2911 2909 1185 1181 11464 11338 113	823 775 586 688 648 475 422 397 343 274 168
V V V V V V V V V V V V V V V V V V V	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ν _{as} NH(100) ν _a NH(100) ν _s NH(100) ν _s NH(100) ν _a CH(99) ν _a CH(99) ν _s CH(99) δNH ₂ (99) δNH ₂ (99) δCH ₃ (94) δCH ₃ (96) δCH ₃ (96) δCH ₃ (96) δCH ₃ (96) δCH ₃ (96) δCH ₃ (13) ωCH ₂ (66), τCH ₂ (13) ωCH ₃ (66), τCH ₂ (13) ωCH ₃ (66), τCH ₂ (13) ωCH ₃ (66), τCH ₃ (13) ωCH ₃ (66), ωCH ₃ (14) ωNH ₃ (77), ωCH ₃ (14) ωNH ₂ (77), ωCH ₃ (14) ωNH ₂ (92) νCN(92) νCN(92) νCN(92)	νC(61), νCN(15) ρCH ₃ (69), ρNH ₃ (37) ρNH ₃ (63), ρNH ₃ (64), ρCH ₃ (35) ρNCC(59), δRhNC(22) νRhN(64), δRhNC(14), δNCC(13) σNCC(13) σNCC(13) σNCC(13) σNCC(26), τCC(26) δNCC(26), τCC(20) δNCC(26), τCC(20) δNCC(20), τCC(20)
$\begin{smallmatrix} 100 & 10 & \\ 10 & 2 & 2 & \\ 2 & 2 & 2 & \\ 11 & 1 & 1 & \\ 8 & 8 & 8 & \\ 8 & 9 & 9 & \\ 8 & 9 & 9 & \\ 8 & 9 & 9 & \\ 8 & 9 & 9 & \\ 8 & 9 & 9 & \\ 9 & 9 & 9 & \\ 9 & 9 & 9 & \\ 9 & 9 &$	4 00 4 4 6
$\begin{smallmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	4466286 5 65 65 6
3245 3150 3150 3146 2296 2296 2890 1607 1607 11469 11357 11357 11310 11173 11173 11028 980	880 812 750 728 664 506 506 397 397 184 1120
3233 3174 3174 3174 2971 2909 1606 1606 1186 1186 1181 1181 1181 1181	901 820 751 731 663 607 402 359 291 173
5 6 7 7 7 7 7 7 7 7 7 8 8 8 8 9 7 7 7 7 7 7	7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Ħ	

^a The fundamentals of the tris(1,2-ethanediamine)rhodium(III) eation have been arranged according to their species with diminishing frequencies, those of the deuterated compounds to give, as fas as possible, matching PED's. The stated PED's are only approximative and small contributions have been neglected. ^b Iteration based upon all eight isotopic species. ^c Solvent data used wherever available. ^d Shift following ¹⁵N substitution of all six nitrogen atoms. The PED is defined as $x_{ik} = 100F_{ii} L_{ik}^2 / \lambda_k$.

Acta Chem. Scand. A 31 (1977) No. 2

Table 3. Continued.

force constant $F_{\rm L}=0.209$ mdyn/rad (cf.²² [Ni(NH₃)₆]²⁺: 0.09 mdyn/rad) suggest a strong chelation of the ligand.

Normal modes mainly confined to the ligand. From the results given in Table 3 the following values seem to be typical for 1,2-ethanediamine bonded to Rh³⁺: δ CH, 1470 cm⁻¹, ω CH, 1370 cm⁻¹ and 1330 cm⁻¹, tCH₂ 1230 and 1330 cm⁻¹, and ρCH_2 820 and 980 cm⁻¹. The results of free 1,2-ethanediamine based upon cis C_{2v} symmetry,24,25 later proved incorrect, correspond to the following ranges: δCH_2 1445-1469, ω CH, 1298-1318, tCH, 880-1360, and ρ CH₂ 761 – 815 cm⁻¹. The only major discrepancy concerns the assignment of a tCH₂ mode to 880 cm⁻¹ in free 1,2-ethanediamine 25 which appears to be too low. Previous assignments of the modes in [Rh(en)₃]³⁺ complexes have been based upon the results of N-deuteration 28,29 using polarized radiation.30

Our calculations confirm the coupling between the two amine groups of 1,2-ethanediamine to be much smaller, and the separation between the in-phase and the out-of-phase combination usually does not exceed 50 cm⁻¹. The following regions are typical for 1,2-ethanediamine chelated to Rh3+: δNH_2 1600-1610 cm^{-1} , $tNH_2 1290 - 1310 cm^{-1}$, $\omega NH_2 1165 - 1185$ cm⁻¹, and ϱ NH₂ 730 – 780 cm⁻¹. As before, these regions apply only to modes which are reasonably localized; they may easily be displaced by 100 cm⁻¹ upon coupling with neighbouring modes. The δNH_2 mode in $[Rh(en)_3]^{3+}$ chelates has been attributed by other authors to bands in the 1500-1600 cm⁻¹ region. 28,29 This can hardly be correct since 3 (i) the bands in this region (in contrast to the results described recently by Gouteron 30) disappear by removal of the coordinated water, (ii) the bands are not observed in solution (cf. Krishnan and Plane 31) and (iii) these assignments disagree with the results of the normal coordinate analysis, which consistently place them above 1600 cm⁻¹.

The C-C and C-N stretching vibrations in $[Rh(en)_*]^{3+}$ are coupled to other vibrations, but the C-N stretching modes are usually found in the region $1020-1070~cm^{-1}$. Previous assignments have been based upon comparison with free 1,2-ethanediamine, and locate the modes in question within the region $1000-1100~cm^{-1}$. 28 , 29

Normal modes mainly confined to the central RhN_s region. The six rhodium-nitrogen stretching coordinates form a basis with the reduced representation: $A_1 + A_2 + 2E$ of the point group D_3 . Previous investigations ^{29,30} have identified the symmetrical Rh-N stretching vibration of species A, as the very strong Raman band at ca. 545 cm⁻¹. Our calculations confirm this band to consist mainly of v_sRhN (68 %), but weakly coupled to the δ NCC (11 %) and δ RhNC (14 %) deformational modes. Inspection of the L matrix shows that stretching of the RhN bonds is followed by a closing of the RhNC angles and opening of the NCC angles in such a way that the distance between the rhodium atom and the midpoint of the C-C bond is almost unaltered. It should be noted that this band is unambiguously identified by the major shift on ¹⁵N substitution (Table 3). It has recently been proposed 32 that the other strong fundamental of species A_1 in the 280-320 cm⁻¹ region of the Raman spectra of tris(ethylenediamine) complexes (i.e. v_{17} at 272 cm⁻¹) should have substantial RhN stretching character. This is not confirmed by our calculations, which indicate the contribution of veRhN to this band to be only 12 %.

Our calculations show that two bands near 450 cm⁻¹ in $[Rh(en)_s]^{s+}$ attributed ³⁰ to species A_2 and E can be assigned as the fundamentals ν_{33} and ν_{65} . The former of these arises from $\nu_{as}RhN$ (84%) coupled to δ NCC (14%), *i.e.* corresponds to an almost pure Rh-N stretching vibration of species A_2 . This was previously assigned ²⁸⁻³⁰ to bands at ca. 100 cm⁻¹ higher frequencies.

One of the Rh-N stretching vibrations of species E was attributed ²⁹ to a band near 500 cm⁻¹, but this band was assigned by Gouteron ³⁰ to a a ligand deformation. The major shifts observed on ¹⁵N substitution (Table 3) leave no doubt that this band must arise mainly from Rh-N stretching. However, the calculations indicate that in addition to vRhN (64 %) the PED contains δ NCC (13 %) and δ RhNC (14 %), and accordingly the fundamental comprises both proposals mentioned above. The other Rh-N stretching vibration of species E is calculated to lie around 290 cm⁻¹, which complies with a weak band in the spectrum of [Rh(en)₃]³⁺ but may very well need future revision since the 15N shifts are not decisive.

The remaining fundamentals of this region show no features of special interest. However, it should be mentioned that the fundamental v_{32} of species A_2 was previously attributed to Rh-N stretching 28-30 while our calculations indicate mainly ring deformation coupled to CH, rocking. On successive removal of 1, 2, and 3 hydrogen atoms with KNH2 this band is displaced towards higher frequencies.28 Since coordination of ethylenediamine anions is undoubtedly much stronger than coordination of neutral ethylenediamine, this shift merely reflects the increase in force constants for $\delta RhNC$ and δNCC following deprotonation.

Acknowledgement. This project was partially supported by grants from the Danish Natural Science Research Council and the Norwegian Research Council for Science and the Humanities.

REFERENCES

- 1. Ashley, P. J. and Torrible, E. G. Can. J. Chem. 47 (1969) 167.
- 2. Omura, Y., Nakagawa, I. and Shimanouchi, T. Spectrochim. Acta A 27 (1971) 2227.
 3. Borch, G., Klæboe, P. and Nielsen, P. H.
- Spectrochim. Acta. To be submitted.
- 4. Andersen, P., Galsbøl, F. and Harnung,
- S. E. Acta Chem. Scand. 23 (1969) 3027.
 Iwata, M., Nakatzu, K. and Saito, Y. Acta Crystallogr. B 25 (1969) 2562.
 Corey, E. J. and Sneen, R. A. J. Am.
- Chem. Soc. 77 (1955) 2505.
- 7. Kuroda, R., Sasaki, Y. and Saito, Y. Acta Crystallogr. B 30 (1974) 2053.
 8. Cotton, F. A. and Norman, J. G., Jr. J. Am. Chem. Soc. 93 (1971) 80.
- 9. Caulton, K. G. and Cotton, F. A. J. Am.
- Chem. Soc. 93 (1971) 1914.Lussier, R., Edwards, J. O. and Eisenberg, R. Inorg. Chim. Acta 3 (1969) 468.

 11. Schachtschneider, J. H. and Snyder, R. G.
- Spectrochim. Acta 19 (1963) 117.
- 12. Snyder, R. G. and Schachtschneider, J. H. Spectrochim. Acta 21 (1965) 169.
- Borch, G., Henriksen, L., Nielsen, P. H. and Klæboe, P. Spectrochim. Acta A 29 (1973) 1109.
- 14. Henriksen, L., Nielsen, P. H., Borch, G. and Klæboe, P. Spectrochim. Acta A 31 (1975) 373.
- 15. Henriksen, L., Nielsen, P. H., Borch, G. and Klæboe, P. Spectrochim. Acta A 31 (1975) 191.
- Henriksen, L., Nielsen, P. H., Borch, G. and Klæboe, P. Spectrochim. Acta A 31 (1975) 1371.
- 17. Schachtschneider, J. H. and Snyder, R. G. Spectrochim. Acta 19 (1963) 168.

Acta Chem. Scand. A 31 (1977) No. 2

- 18. Dellepiane, G. and Zerbi, G. J. Chem. Phys. 48 (1968) 3573.
- 19. Griffith, W. P. J. Chem. Soc. A (1966)
- 20. Bigotto, A., Costa, G., Galasso, V. and De Alti, G. Spectrochim. Acta A 26 (1970)
- 21. Claassen, H. H. J. Chem. Phys. 30 (1959)
- 22. Müller, A., Schmidt, K. H. and Vandrish, G. Spectrochim. Acta A 30 (1974) 651
- 23. Schmidt, K. H. and Müller, A. Inorg. Chem. 14 (1975) 2183.
- 24. Sabatini, A. and Califano, S. Spectrochim.
- Acta 16 (1960) 677. 25. Diot, A. and Theophanides, T. Can. J.
- Spectrosc. 17 (1972) 67. 26. Jouan, M. and Dao, N. Q. C. R. Acad. Sci. Ser. C 274 (1972) 1987.
- 27. Jamet-Delcroix, P. S. Acta Crystallogr. B 29 (1973) 977.
- 28. Watt, G. W. and Crum, J. K. J. Am.
- Chem. Soc. 87 (1965) 5366. 29. James, D. W. and Nolan, M. J. Inorg. Nucl. Chem. Lett. 9 (1973) 319.
- 30. Gouteron, J. J. Inorg. Nucl. Chem. 38 (1976) 63.
- 31. Krishnan, K. and Plane, R. A. Inorg.
- Chem. 5 (1966) 852. Flint, C. D. and Matthews, A. P. Inorg. Chem. 14 (1975) 1219.

Received August 11, 1976.