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Table 1. Methylation analysis of periodate
oxidised — borohydride reduced locust bean
gum. The experimental conditions have been
repeated.”»® Components (area, of peak, relative
to 2,3,6-Man =1.00) on GLC, column SP 1000.

Time of 1,4-Eryt® 1.Eryt?® 2,3-Man
oxidation
0 min ¢ - - 0.37

30 min 0.35 0.16 0.37

90 min 0.24 0.26 0.42
3h 0.33 0.37 0.43
5h 0.33 0.45 0.43

24 h 0.43 0.62 0.42

30 h 0.50 0.68 0.45

48 h 0.95 0.67 0.45

“In the analysis of unoxidised polysaccharide
2,3,4,6-tetra-O-methyl-D-galactose (20 %) was also
detected. ® These figures are inacourate because the
volatility of acetylated tetritol ethers leads to con-
siderable losses during the evaporation of solutions.”

are isolated, only unbranched D-mannose resi-
dues would be completely protected from
oxidation. A methylation analysis of the oxi-
dised and borohydride-reduced %' polysaccha-
ride should therefore give 2,3,6-tri-O-methyl-D-
mannose as the only hexose derivative in the
hydrolysate. On the other hand, for a galacto-
mannan in which all the D-galactose residues
are contiguous, as in (2), it would be mostly
6-O-substituted D-mannose residues that were
protected, and methylation analysis should
give, almost exclusively, 2,3-di-O-methyl-D-
mannose as the only hexose derivative.

For a perfectly random distribution of D-
galactose residues, and an equal rate of oxida-
tion of unsubstituted and substituted D-man-
nose residues, the ratio between 2,3-di-O-
methyl- and 2,3,6-tri-O-methyl-D-mannose
should be the same as in the methylation
analysis of the original galactomannan. In
fact, there is an indication 7 that the unsubsti-
tuted residues are oxidised somewhat faster
than the substituted residues, so that the ratio
should be a little higher for the oxidised than
for the original polysaccharide.

For guaran, the above ratio for the oxidised
material was approximately 2:1, on a molar
basis, compare(f to 1.6:1 as observed for the
starting material.” For locust bean gum it in-
creased from 0.37, for the starting material,
to a constant value of about 0.45 (Table 1).

It is evident, therefore, that simple, alternat-
ing structures (I) and simple, block structures
(2) are excluded for both polysaccharides. The
results are fully consistent with a near-random
arrangement such as (3), which is the simplest
interpretation of the present data. However,
they are not in conflict with the kind of struc-

ture proposed by Courtois and Le Dizet? for
locust bean gum, in which sequences such as
(1) and (2) are both present, in a ratio (based
upon D-mannose) of approximately 2:1.
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Debromination of 1,2-Dibromides with
Sodium Dithionite *
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In connection with a current investigation of
sulfinates,! we have found that sodium di-
thionite can act as a debromination agent.?
Treatment of meso-a,a’-dibromostilbene with
an excess of anhydrous sodium dithionite in
refluxing N,N-dimethylformamide afforded
trans-stilbene almost quantitatively. The re-

* Kempe, T. and Norin, T., presented in part at
“QOrganikerdagarna’, Stockholm, June 1972.
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action appeared to be fast and was complete
in about 15 min. Similar treatment of trans-1,2-
dibromocyclohexane gave cyclohexene, which
distilled during the debromination. The forma-
tion of cyclohexene was complete after 30 min
with an overall 60 9, yield.

The reaction was not stereospecific as shown
by an investigation of the debromination of
meso- and racemic-2,3-dibromobutanes. The
butenes thus formed were collected and ana-
lysed by GLC. Both the meso- and racemic-2,3-
dibromobutanes gave a mixture of cis- and
trans-2-butenes in the ratio 1:1 in about 65 9%,
of the theoretical yield.

Reduction reactions involving sodium di-
thionite can formally be considered to proceed
via nucleophilic attack of the dithionite anion
followed by cleavage of the sulfur-sulfur bond
to sulfur dioxide and an intermediate sulfi-
nate 7 or viag electron transfers by sulfur di-
oxide radical anions (S0,7).8-12

The results obtained in the debromination
reaction may be explained by assuming a
nucleophilic attack of the dithionite anion via
a common carbocation intermediate to give
a mixture of threo-2-bromo-1-methylpropane-
sulfinate and erythro-2-bromo-1-methylpropane-
sulfinate. The sulfinates should then decompose
in a stereospecific manner to cis- and trans-2-
butene, bromide ion and sulfur dioxide, re-
spectively, according to a known reaction.!

Available data, however, do not exclude a
mechanism involving & nucleophilic attack of
the sulfur dioxide radical anion (SO,”) on an
intermediate carbocation from the vicinal
dibromides. An alternative mechanism would
be a one-electron transfer reaction, which lacks
high stereospecificity.!® Electrochemical reduc-
tions of vicinal dibromides, however, proceed
in a stereospecific manner,’ which may be due
to experimental conditions.

Experimental. Debromination of meso-a,a’-di-
bromostilbene. meso-a,a’-Dibromostilbene (13.6
g, 0.04 mol) and sodium dithionite (8.7 g, 0.05
mol) were dissolved in N,N-dimethylformamide
(100 ml). The reaction mixture was heated for
15 min at 140—145 °C and then poured into
water (1000 ml). The stilbene precipitate was
filtered off. Recrystallization from ethanol
yielded trans-stilbene (6.5 g, yield 90 %),
identified by comparison with an authentic
sample (m.p. and mixed m.p. 124 °C).

Debromination. of trans-1,2-dibromocyclohex-
ane. trans-1,2-Dibromocyclohexane (6.0 g, 0.025
mol) and sodium dithionite (8.7 g, 0.05 mol)
were dissolved in N,N-dimethylformamide
(60 ml). The reaction mixture was heated for
1h at 140 — 145°C. The cyclohexene thus formed
was continuously distilled from the reaction
mixture (1,2 g, b.p. 83 °C/760 mmHg, yield
60 %) and characterized by comparison with
an authentic sample.

Debromination of meso- and racemic-2,3-
dibromobutane. To a stirred mixture of sodium
dithionite (17.5 g, 0.1 mol) in N,N-dimethyl-
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formamide (200 ml) at 140— 145 °C was added
meso- or racemic-2,3-dibromobutane (10.8 g,
0.05 mol) over 10 min. The gaseous butenes
were formed immediately and collected in about
60— 65 9%, yield in a graduated cylinder via a
washing bottle containing 2 M aqueous sodium
hydroxide. Both the meso- and racemic-2,3-
dibromobutanes gave a mixture of cis- and
trans-2-butenes in the ratio 1:1 as shown by
GLC analysis (column, 4.5 m x 3 mm, packed
with 15 9, dimethylsulfolane on Gas Chrom.
RZ 60/80 mesh, relative retention times trans-
and éis-2-butene 1.00:1.08, column temperature
30 °C).
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