Syntheses of Some Furanosidic D-Fructose Derivatives

BERTIL ERBING and BENGT LINDBERG

Department of Organic Chemistry, Arrhenius Laboratory, University of Stockholm, S-104 05 Stockholm, Sweden

The syntheses of α - and β -penta-O-acetyl-D-fructofuranose and of α - and β -1,3,4,6-tetra-O-acetyl-D-fructofuranosyl fluoride are reported. The substances were characterized by their ¹H and ¹⁸C NMR spectra.

The chemistry of D-fructose and its derivatives has been summarized. The glycosidically linked in natural products, D-fructose always occurs in the β -D-furanose form, therefore the synthesis of furanosidic D-fructose derivatives is of some interest. The recent finding that dextran may be synthesized by the action of dextransucrase on α -D-glucopyranosyl fluoride raises the possibility of an analogous synthesis of levan from β -D-fructofuranosyl fluoride. We now report the synthesis of the latter substance, as the acetate, and of some other D-fructofuranose derivatives.

On acetolysis of 2,3,4-tri-O-acetyl-1,6-di-O-trityl-D-fructofuranose (1), Bredereck and co-workers 4 obtained a mixture of fully acetylated D-fructofuranoses. These have now been separated by chromatography on silica gel into the

amorphous α -form (2, $[\alpha]_{878}^{22} + 58^{\circ}$) and the β -form (3, m.p. $57 - 58^{\circ}$ C, $[\alpha]_{678}^{22} - 9^{\circ}$). The starting material also is an anomeric mixture, as evident from its ¹²C NMR spectrum (Table 1).

Treatment of the mixture of D-fructofuranose acetates with liquid hydrogen fluoride yielded the tetra-O-acetyl- α - and β -D-fructofuranosyl fluorides, which were fractionated by chromatography on silica gel. Neither of the products crystallized. The optical rotations were remarkably similar, $[\alpha]_{578}^{22} + 45^{\circ}$ for the α -form (4) and $[\alpha]_{578}^{22} + 36^{\circ}$ for the β -form (5), indicating different conformation for the two anomers.

The structures as well as the anomeric assignments of the penta-O-acetyl-D-fructofuranosyl fluorides follow from considerations of chemical shifts and coupling constants in the ¹H and ¹³C NMR spectra (Table 1. For comparison, the chemical shifts of penta-O-acetyl- β -D-fructopyranose are also given). In agreement with previous findings, ^{5–3} the ¹³C chemical shifts of the furanoses were 3–7 ppm higher than those for the same carbon atoms of the corresponding fructopyranoses. In their studies

Table 1. The ¹³C NMR shifts in δ (ppm from TMS) of α - and β -D-fructofuranose pentaacetate (2 and 3); α - and β -D-fructofuranosyl fluoride tetraacetate (4 and 5); β -D-fructopyranose pentaacetate (6); the anomeric mixture of 1,6-ditrityl-D-fructofuranose triacetate (1) and β -D-fructofuranose derivatives (Ref. 6).

-	1	2	3	4	5	6	Ref. 6
C-2	109.4 105.4	107.9	104.9	117.5	113.9	102.3	~ 104.6
$ \begin{array}{c} C-3 \\ C-4 \\ C-5 \end{array} $	76.5 - 86.8	78.4 80.6 76.1	75.7 79.5 75.6	78.2 83.5 76.7	75.0 80.2 74.7	$\left.\right\}$ 62.9 - 68.2	~77.6 ~82.6 ~75.1
C-1 C-6	62.3-64.6	61.8 62.8	63.7 63.9	61.2 62.7	61.7 63.6		~ 63.3 ~ 62.6

of the ¹³C NMR spectra of various furanosidic carbohydrates. Perlin and coworkers have shown that in hexulofuranoses with the arabinoand ribo-configurations (fructose and psicose), a cis-disposition of the hydroxyl group at C-3 and the methoxy group at C-2 gives rise to stronger shielding at C-2 than does the corresponding trans-disposition (methyl a-D-fructofuranoside 105.2 ppm and methyl β-D-fructofuranoside 102.4 ppm).5 The anomeric C-2 therefore comes into resonance at lower field for the α-anomers than for the corresponding B-anomers. Application of this finding to the 2 and 3 furanosides gives the assignments shown (Table 1). Thus, the fructofuranose pentaacetate with δ 107.9 for the anomeric carbon atom is assigned the α -configuration (2), while that with the corresponding δ 104.9 is assigned the β configuration (3). Similarly, in the tetra-Oacetyl-fructofuranosyl fluorides, the anomer with δ 117.5 for C-2 is assigned the α -configuration (4) and that with δ 113.9 for C-2 the β configuration (5). The assignments for the pentaacetates are corroborated by the observed optical rotations. No such confirmation has been

obtained for the tetra-O-acetyl-furanosyl fluorides (4 and 5). The reason for this is discussed below. However, these latter configurational assignments are confirmed by the observed ¹⁹F-2, ¹H-3 coupling constants. Hall and coworkers ⁹ have reported $^3J_{\rm H,F}$ 20.6 Hz for 2,3,5-tri-O-benzoyl- α -D-ribofuranosyl fluoride (H-2 and F-1 trans-disposed), in agreement with the generally observed angular dependence of $^3J_{\rm H,F}$ coupling constants. ¹⁰ We therefore assign the $^3J_{\rm H,F}$ coupling constant of 7 Hz to tetra-O-acetyl- α -D-fructofuranosyl fluoride and that of about 16 Hz to the corresponding β -anomer.

The similarly of the optical rotations of the anomeric fructofuranosyl fluorides most probably reflects different conformational preferences. A preference for a quasi-axial orientation of the fluorine atom in each of the two anomers (anomeric effect) would lead to two different ring conformations. Conformations E_2 or 3T_2 11 for the α -anomer appear compatible with the observed NMR coupling constants and 2E or 2T_0 correspondingly for the β -anomer. (The indexes refer to the numbering in D-fructose.)

EXPERIMENTAL

General methods. Concentrations were performed under reduced pressure. Precoated plates with Silica Gel F₂₅₄ (Merck) were used for TLC, and Silica Gel 60 (230 – 400 mesh, Merck) was used for column chromatography. Light petroleum refers to a fraction with b.p. 60 – 71 °C. NMR spectra were recorded with Varian A 60-A and Varian XL-100 instruments (CDCl₂ with TMS as internal reference). ¹H spectra were recorded at 60 and 100.1 MHz and ¹³C spectra at 25.2 MHz. Optical rotations were determined with a Perkin-Elmer 141 polarimeter.

2,3,4-Tri-O-acetyl-1,6-di-O-trityl-D-fructo-furanose (1). 1,6-Di-O-trityl-D-fructose was prepared according to Bredereck et al., 2 except that crystallization from pyridine was omitted. This product (16 g) was acetylated, worked up 2 and purified by chromatography on a silica gel column (80 × 8 cm), using light petroleum—ethyl acetate (3:1) as irrigant. The main product (8 g) was identified as a mixture of anomeric furanosides by 18C NMR (Table 1).

Penta-O-acetyl- α - and β -D-fructofuranose (2 and 3). The trityl derivative 1 (5.8 g) was subjected to acetolysis and worked up as described by Bredereck. TLC using light petroleum—ethyl acetate, 1:1, revealed two components in the derived syrup, the minor one having low mobility. The product was fractionated on a silica gel column (40×4 cm) using

light petroleum - ethyl acetate, 1:1, as irrigant. The minor component (0.3 g) was probably a tetraacetate as acetylation yielded a product with the same mobility as the pentaacetate. TLC demonstrated that the major component (2.4 g) was a mixture of two substances with slightly different mobilities. Separation of this material (1.4 g) on a silica gel column (30×3 cm), using the same irrigant, yielded the pure anomers, identified by their NMR spectra.

Penta-O-acetyl- α -D-fructofuranose (2, 1.05 g), $[\alpha]_{578}^{22}$ +58° (c 1.0, CHCl₃), was the faster

component.

Penta-O-acetyl- β -D-fructofuranose (3, 330) mg), $[\alpha]_{578}^{22} - 9^{\circ}$ (c 1.0, CHCl₈). Crystals (ethanol), m.p. 57 – 58 °C. (Found: C 48.9; H 5.59.

 $C_{18}H_{29}O_{11}$ requires: C 49.2; H 5.68.) 1,3,4,6-Tetra-O-acetyl-a- and β -D-fructofuranosyl fluoride (4 and 5). The anomeric mixture of fructofuranose pentaacetates (2 and 3, 2.2 g) in liquid hydrogen fluoride (10 ml) was kept for 15 min at -15°C and then for 15 min at 20°C. The solution was poured into a stirred mixture of ice-water (100 ml) and chloroform (100 ml). The chloroform layer was separated and the aqueous phase extracted with chloroform (50 ml). The combined chloroform phases were washed with cold 1 M sodium hydrogen carbonate $(2 \times 50 \text{ ml})$, cold water $(5 \times 50 \text{ ml})$, dried (MgSO₄) and concentrated to a syrup. This was fractionated on a column of silica gel $(40 \times 4 \text{ cm})$ using light petroleum-ethyl acetate (1:1) as irrigant.

1,3,4,6-Tetra-O-acetyl-α-D-fructofuranosyl fluoride (4, 690 mg), $[\alpha]_{578}^{22}$ +45°, was eluted

1,3,4,6-Tetra-O-acetyl- β -D-fructofuranosyl

1,5,4,0-1etra-U-acetyl- β -D-fructofuranosyl fluoride (5, 430 mg), showed $[\alpha]_{573}^{22} + 36^{\circ}$.

¹H NMR shifts and coupling constants.

^a-D-fructofuranose pentaacetate (2): δ 5.9
(H-3), 5.2 (H-4), 4.1-4.8 (H-1, H-5, H-6); $J_{3,4}$ 4 Hz, $J_{4,5}$ 6 Hz. β -D-fructofuranose pentaacetate (3): δ ~5.7
(H-3, H-4), 4.5-4.7 (H-1, H-5, H-6); $J_{3,4}$ and $J_{4,5}$ probably small.

^a-D-fructofuranosyl fluoride tetracectate (4):

α-D-fructofuranosyl fluoride tetraacetate (4): 5.55 (H-3), 5.0 (H-4), 4.2-4.5 (H-1, H-5,

 ^{13}G (H-3), 0.0 (H-3), ^{12}G (H-1), ^{12}G (H-1), ^{13}G (H-1),

 $J_{F,1}$ 28.8; $J_{F,6}$ 0.5; $J_{F,3}$, $J_{F,4}$, $J_{F,5}$ 46.0, 1.5, 0.2;

 $J_{F,2}^{F,1}$ 226.8. β -D-fructofuranosyl fluoride tetraacetate (5): $J_{\rm F,1}$ 43.7; $J_{\rm F,3}$, $J_{\rm F,4}$, $J_{\rm F,5}$ 20.9, 2.8, 0.4; $J_{\rm F,2}$ 232.8.

Acknowledgements. The authors are indebted to Professor Per J. Garegg and Mrs. Christina Erbing for their interest in this work and to Dr. Carl-Gunnar Swahn and Mr. Tommy Iversen for running the NMR spectra. This work was supported by the Swedish Natural Science Research Council.

REFERENCES

- 1. Barry, C. P. and Honeyman, J. Advan.
- Carbohyd. Chem. 7 (1952) 53. Verstraeten, L. M. J. Advan. Carbohyd. Chem. 22 (1967) 229.
- 3. Genghof, D. S. and Hehre, E. J. Proc. Soc.
- Exp. Biol. Med. 140 (1972) 1298. 4. Bredereck, H., Wagner, A., Hagelloch, G. and Faber, G. Chem. Ber. 91 (1958) 515.
- Perlin, A. S., Cyr, N., Koch, H. J. and Korsch, B. Ann. N. Y. Acad. Sci. 222 (1973) 935.
- 6. Doddrell, D. and Allerhand, A. J. Amer. Chem. Soc. 93 (1971) 2779; Allerhand, A. and Doddrell, D. Ibid. 93 (1971) 2777.
- 7. Binkley, W. W., Horton, D., Bhacca, N. S. and Wander, J. D. Carbohyd. Res. 23 (1972) 301.
- Binkley, R. W., Binkely, W. W. and Wickberg, B. Carbohyd. Res. 36 (1974) 196.
- 9. Hall, L. D., Steiner, P. R. and Pedersen, C. Can. J. Chem. 48 (1970) 1155.
- Kotowycz, G. and Lemieux, R. U. Chem. Rev. 73 (1973) 669.
- 11. Stoddart, J. F. Stereochemistry of Carbohydrates, Wiley-Interscience, 1971, p. 97.
- 12. Bredereck, H., Hennig, I. and Zinner, H. Chem. Ber. 86 (1953) 476.

Received May 12, 1975.