## The Crystal Structures of $\beta$ -V<sub>5</sub>As<sub>3</sub>, $\gamma$ -V<sub>5</sub>As<sub>3</sub> and Cr<sub>5</sub>As<sub>3</sub>

ROLF BERGER

Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

The crystal structures of two  $V_5As_3$  modifications and  $Cr_5As_3$  have been determined using single-crystal methods  $(\beta \cdot V_5As_3)$  or powder methods  $(\gamma \cdot V_5As_3)$  and  $Cr_5As_3$ . The symmetry is orthorhombic (space group Pnma).  $\beta \cdot V_5As_3$  is isotypic with  $Y_5Bi_3$  and has a range of homogeneity. The cell dimensions for a crystal of composition  $V_{4,84}As_3$  are a=6.440 Å, b=7.677 Å, c=9.285 Å.  $\gamma \cdot V_5As_3$  and  $Cr_5As_3$  are isotypic with  $\beta \cdot Yb_5Sb_3$ . The cell dimensions for  $\gamma \cdot V_5As_3$  are a=9.464 Å, b=7.520 Å, c=6.471 Å, and for  $Cr_5As_3$ : a=9.266 Å, b=7.449 Å, c=6.396 Å. The two structure types are very similar and are closely related to  $Rh_5Ge_3$ .

The occurrence of a phase of the  $W_8Si_2$  structure type in the V-As system was reported by Boller and Nowotny.¹ They observed ¹,² that the composition of this phase deviated appreciably from the ideal crystallographic formula. In the following text, this phase is denoted by  $\alpha$ -V<sub>8</sub>As<sub>2</sub>.

The formation at high temperatures of two additional phases of compositions approximating  $V_5As_3$  was mentioned in an earlier communication. A complete crystal-structure analysis of one of them, denoted by  $\beta$ - $V_5As_3$  (previously by  $\beta$ ), is reported in the present paper.  $\beta$ - $V_5As_3$  has the ideal crystallographic formula  $V_5As_3$ , but a moderate range of homogeneity is indicated. The second phase, denoted by  $\gamma$ - $V_5As_3$  (previously by  $\gamma$ ), has been found only in arc-melted alloys. X-Ray powder and single-crystal data show that  $\gamma$ - $V_5As_3$  is isotypic with  $\beta$ - $Yb_5Sb_3$ . A  $\beta$ - $Yb_5Sb_3$  phase has also been found in the Cr-As system.

#### EXPERIMENTAL

Preparation of  $\beta$ -V<sub>5</sub>As<sub>3</sub>. The single crystal of  $\beta$ -V<sub>5</sub>As<sub>3</sub> used for collecting the X-ray inten-

Acta Chem. Scand. A 30 (1976) No. 5

sity data was selected from a sample prepared in the following manner.

Vanadium turnings (Vanadium Corp. of America, purity 99.5 %) and arsenic (Koch-Light Laboratories Ltd., claimed purity 99.99 %) were reacted in a silica tube at 900 °C for two days and heated for another four days at 1000 °C. A powder photograph of the sample showed the presence of α-V<sub>5</sub>As<sub>3</sub>, β-V<sub>5</sub>As<sub>3</sub> and tetragonal V<sub>3</sub>As<sub>2</sub>. Single crystals and crystal aggregates of β-V<sub>5</sub>As<sub>3</sub> and V<sub>3</sub>As<sub>2</sub> were formed. Normally, crystal formation is slow in this system. Traces of an oxide impurity were also detected, indicating that a chemical vapour-transport reaction involving oxygen-containing molecular species might be responsible for the enhanced crystal growth.

Preparation of γ-V<sub>5</sub>As<sub>3</sub> and Cr<sub>5</sub>As<sub>3</sub>. Since there is an unavoidable loss of arsenic on arcmelting, both these compounds were synthesized by arc-melting material richer in arsenic than that corresponding to the stoichiometric formulae. The chromium used for the syntheses was labelled as Elektrolyt-Reinstchrom manufactured by Gesellschaft für Elektrometallurgie m.b.H., Nürnberg. A single-phase specimen of γ-V<sub>5</sub>As<sub>3</sub> could be obtained but in other samples this phase occurred together with β-V<sub>4</sub>As<sub>3</sub>, β-V<sub>5</sub>As<sub>3</sub> or α-V<sub>5</sub>As<sub>3</sub>. Since the solidification process occurs under a very large temperature gradient, these phase-analytical observations cannot serve as any reliable evidence for the phase relationships under equilibrium conditions.

In the arc-melted  $\rm Cr-As$  samples,  $\rm Cr_5As_3$  occurred together with CrAs. Heat treatment in a silica tube at 1000 °C for three days yielded CrAs and  $\rm Cr_4As_3$ . No well-formed single crystals could be obtained.

X-Ray powder investigations. The cell dimensions were determined using a Guinier-Hägg type focussing camera with strictly monochromatic  $\operatorname{Cr} K\alpha_1$  radiation  $[\lambda=2.28975\ \text{Å}]$  and with silicon  $(a=5.431065\ \text{Å})$  or germanium  $(a=5.657906\ \text{Å})$  as internal calibration standards. Cell parameters were refined by the least-squares method. The powder photograph of  $\beta\text{-V}_5\mathrm{As}_3$  was indexed using approximate cell dimensions from Weissenberg and oscillation

Table 1. Powder diffraction data for  $\beta$ -V<sub>4.94</sub>As<sub>3</sub>. Cell dimensions: a = 6.4402(3) Å, b = 7.6767(4) Å, c = 9.2846(5) Å.

| hk1        | Q×10 <sup>5</sup><br>obs. | (Å <sup>-2</sup> )<br>colc. |          | ensity<br>. calc.          | hk1        | Q×10 <sup>5</sup><br>obs. | (Å <sup>-2</sup> )     |         | nsity<br>calc.                  |
|------------|---------------------------|-----------------------------|----------|----------------------------|------------|---------------------------|------------------------|---------|---------------------------------|
| 011<br>101 | 2858<br>3566              | 2857<br>3571                | :        | 0                          | 301<br>311 | 22857<br>24552            | 22859<br>24556         | 27      | 7<br>27                         |
| 002<br>111 | 5265                      | 4640<br>5268                | -        | 0<br>2<br>0<br>0<br>2<br>3 | 230<br>024 | 24919*<br>25344           | 24916<br>25348         | 23      | 9<br>33                         |
| 020<br>102 | 6787                      | 678 <b>7</b><br>7051        | -        | 0                          | 033<br>231 | 25711                     | 25712<br>26076         | 1       | 13<br>1                         |
| 112<br>200 | 8743<br>9640              | 8748<br>9644                | 9        | 2                          | 302<br>223 | 26339<br>26879            | 26339<br>26872         | 18<br>6 | 12                              |
| 121        | 10352                     | 10359                       | 32<br>18 | 20                         | 040<br>124 | 27156 b<br>27762          | 27150<br>27759         | 46      | 54                              |
| 210<br>022 | 11338                     | 11341                       | 16       | ź                          | 312<br>133 | 28052<br>28121            | 28036<br>28123         | Ξ       | ž                               |
| 013        | 12135                     | 12137                       | 3        | 9<br>2<br>5<br>2<br>0      | 204        | 20121                     | 28205                  | -       | ŏ                               |
| 211<br>103 | 12845                     | 1 2501<br>1 2851            | 39       | 23                         | 232<br>321 | 29646                     | 29556<br>29647         | :       | 4                               |
| 122<br>202 | 13852<br>14286            | 13839<br>14284              | 2        | 0                          | 214<br>015 | 30713                     | 29902<br>30698         | 5       | 5<br>5<br>0<br>0<br>4<br>0<br>5 |
| 113<br>212 |                           | 14548<br>15981              | -        | 0                          | 141<br>105 | 31420                     | 30721<br>3141 <i>2</i> | 6       | ż                               |
| 220<br>031 | 16431                     | 16432<br>16432              | 6        | 6                          | 042<br>303 | 31795<br>32151            | 31790<br>32140         | -       | 7<br>1<br>1<br>3                |
| 221<br>004 | 17591<br>18556            | 17592<br>18561              | 57       | 62<br>5                    | 115<br>322 | 33138                     | 33109<br>33127         | 60      | 56                              |
| 131<br>123 | 18844<br>19638            | 18843<br>19639              | 20<br>47 | 24<br>48                   | 313<br>142 | 33844<br>34207            | 33837<br>34201         | -       | 5<br>3                          |
| 203<br>104 | 20082<br>20977            | 20085<br>20972              | 10       | 13<br>46                   | 224<br>233 | 35002°<br>35366°          | 34992                  | -       | 4                               |
| 222<br>213 | 21 079<br>21 780          | 21072<br>21781              | 90<br>17 | 100                        | 134<br>240 | 36243 °<br>36786          | 36244<br>36794         | 15°     | 17<br>11                        |
| 132<br>114 | 22669                     | 22323                       | 4        | i<br>5                     | 241<br>331 | 30/00                     | 37954<br>38131         | -       | 5                               |
| 114        | 22009                     | 22009                       | •        | 9                          | 331        |                           | 36131                  | -       | 3                               |

a) Overlapped by Ge b) Overlapped by Si c) Overlapped by  $\alpha = V_5 As_3$ 

photographs. The powder photographs of  $\gamma$ - $V_8As_3$  and  $Cr_5As_8$  were successfully indexed by comparison with  $\beta$ - $V_8As_3$ , since the cell dimensions are very nearly equal despite structural differences. Powder intensity data were measured densitometrically with a SAAB film scanner using a method similar to that described by Malmros and Werner. The intensity values obtained were slightly inaccurate due to difficulties in avoiding preferred orientation in the powder samples. Powder diffraction data are given in Table 1 ( $\beta$ - $V_8As_3$ ), Table 2 ( $\gamma$ - $V_8As_3$ ) and Table 3 ( $Cr_8As_3$ )

single-crystal diffractometry. A many-faceted and well-shaped crystal of  $\beta$ -V<sub>5</sub>As<sub>3</sub>, with approximate dimensions  $0.135 \times 0.098 \times 0.076$  mm, was selected for collecting the intensity data. These were recorded on a computer controlled Stoe-Philips four-circle diffractometer using graphite monochromatized MoK $\alpha$  radiation. A step-scan procedure was used for recording the reflexions to a maximum in  $2\theta$  of  $89^{\circ}$ . The part of reciprocal space covered was limited by  $-12 \le h \le 12$ ,  $0 \le k \le 14$  and  $-16 \le l \le 18$ . Instrumental stability and crystal setting were checked regularly using three standard reflexions remeasured every 50 reflexions. The strongest of these three, (040), was found to vary somewhat erratically, while the other two remained within expected fluctuations.

Calculations. The calculations were performed on IBM 370/155 and IBM 1800 computers. The crystallographic programs are listed in Ref. 9. The LINNE film scanner program is a modification of the PILT program devised by G. Malmros.<sup>8</sup> Absorption corrections, with an approximate description of the crystal using 14 limiting faces, were applied to the single-crystal data. The minimum and maximum transmission factors were 0.0891 and 0.1775, using a calculated linear absorption coefficient of 329 cm<sup>-1</sup>.

# DETERMINATION OF THE $\beta$ -V<sub>5</sub>As<sub>3</sub> STRUCTURE

The data obtained from Weissenberg films indicated orthorhombic symmetry, with systematic absences corresponding to the space groups Pnma or  $Pn2_1a$ . The symmetry and the cell volume together with phase-analytical data suggested a unit-cell content of 20 vanadium and 12 arsenic atoms.

In the preliminary structure analysis, the Harker sections P(u,0,w),  $P(u,\frac{1}{2},w)$  and  $P(u,v,\frac{1}{2})$  of the Patterson function were calculated, the intensity material being uncorrected for absorption and averaged intensity values being used for sets of reflexions that should be equivalent according to the orthorhombic symmetry.

The interpretation of the Patterson function was facilitated by the following considerations. The very strong (040) reflexion indicated that the atoms must be essentially confined to planes approximately b/4 apart. Moreover, the very weak (020) reflexion indicated that these planes scatter approximately equally. These observations, together with the fact that the scattering power of an arsenic atom is roughly twice that of vanadium, led to the assumption that vanadium and arsenic occupy one 8d position each, with  $y \sim 0$ , and the rest of the atoms are distributed in 4c positions in the space group Pnma.

The coordinates from the Harker sections, together with distance considerations, gave a reasonable model of the structure.  $F_0$ -syntheses were made and the positional parameters found, together with one scale-factor and six individual isotropic temperature factors, were refined using a full-matrix least-squares method. The atomic scattering factors were taken from Ref. 10 and the dispersion correction factors from Ref. 11. After four cycles a conventional R-value of 0.046 was obtained based on the 1538 strongest reflexions. Now that the assumed composition was confirmed, a linear absorption coefficient was calculated,

Table 2. Powder diffraction data for  $\gamma$ -V<sub>b</sub>As<sub>s</sub>. Cell dimensions: a=9.4640(3) Å, b=7.5204(2) Å, c=6.4712(2) Å.

|      | 0×10 <sup>5</sup> | (Å <sup>-2</sup> ) | Int | ensity  |      | 0×10 <sup>5</sup> | (Å <sup>-2</sup> ), |      | nsity                      |
|------|-------------------|--------------------|-----|---------|------|-------------------|---------------------|------|----------------------------|
| hkl  | obs.              | calc.              | obs | . calc. | hk1  | obs.              | colc.               | obs. | colc.                      |
| 101  | 3505              | 3504               | -   | 1       | 231  | 22771             | 22767               | -    | 9                          |
| 011  | 4156              | 4156               | -   | 3       | 013  | 23254             | 23260               | -    | 6                          |
| 200  |                   | 4466               | -   | 0       | 113  |                   | 24376               | -    | 0                          |
| .111 |                   | 5273               | _   | 0       | 420  | 24935             | 24936               | 61   | 66                         |
| 210  |                   | 6234               | -   | 1       | 203  | 25962             | 25958               | 35   | 20                         |
| 201  |                   | 6854               | -   | 0       | 132  | 26588             | 26582               | 2    | 6                          |
| 020  | 7073              | 7073               | -   | 0       | 322  | 26675             | 26673               | -    | 4                          |
| 211  | 8622              | 8622               | 6   | 4       | 421  | 27324             | 27324               | 10   | 7                          |
| 002  | 9553              | 9552               | -   | 5       | 402  |                   | 27416               | -    | 1                          |
| 121  | 10577             | 10577              | 43  | 20      | 213  | 27723             | 27726               | 35   | 35                         |
| 102  | 10666             | 10668              | 15  | 6       | 040  | 28292             | 28290               | 50   | 70                         |
| 220  | 11537             | 11538              | 20  | 8       | 331  |                   | 28350               | -    | 3                          |
| 301  | 12438             | 12436              | 66  | 32      | 412  |                   | 29184               | -    | 1.                         |
| 112  | 12450             | 12436              | 00  | 2       | 1 23 |                   | 29681               | -    | 2                          |
| 221  |                   | 13926              | -   | 4       | 232  | 29931             | 29931               | -    | 6                          |
| 202  | 14012             | 14018              | -   |         | 501  | 30300             | 30300               | -    | 2<br>6<br>3<br>2<br>1<br>3 |
| 311  |                   | 14204              | -   | 1       | 303  |                   | 31540               | -    | 2                          |
| 212  | 15791             | 15786              | -   | 3       | 141  |                   | 31795               | •    | 1                          |
| 022  |                   | 16624              | -   | 0       | 511  | 32068             | 32068               | -    | 3                          |
| 1 22 | 17743             | 17741              | 108 | 95      | 240  |                   | 32756               |      |                            |
| 400  | 17869             | 17864              | -   | 6       | 223  | 33028             | 33030               | 34   | 45                         |
| 031  | 18303             | 18301              | 7   | 21      | 313  |                   | 33308               | =    | .1                         |
| 131  | 19427             | 19418              | .6  | 9       | 430  | 33773             | 33777               | 5    | 10                         |
| 3 21 | 19506             | 19509              | 49  | 50      | 422  | 34489             | 34488               | 6    | 8<br>2                     |
| 302  | 19606             | 19600              | 16  | 23      | 241  | 35134             | 35144               | -    | .2                         |
| 410  |                   | 19632              |     | .1      | 332  | 35510             | 35513               | 23   | 15                         |
| 401  | 20249             | 20252              | 14  | 48      | 431  | 3615 <b>6</b>     | 36165               | -    | 2                          |
| 230  | 20380             | 20379              |     | 2       | 521  | 37379             | 37372               | 66   | 41                         |
| 222  | 21092             | 21090              | 86  | 100     | 033  |                   | 37405               | -    | 6<br>3<br>9                |
| 312  | 21365             | 21368              | 14  | 4       | 502  | 27020             | 37464               | =    | J                          |
| 411  | 22018             | 22020              | 3   | 9       | 042  | 37832             | 37842               | 8    | y                          |
| 1 03 | 22611             | 22608              | 9   | 20      |      |                   |                     |      |                            |

<sup>\*)</sup> Atomic coordinates taken from B-Yb5Sb3

Table 3. Powder diffraction data for  $Cr_bAs_a$ . Cell dimensions: a=9.2655(4) Å, b=7.4493(3) Å, c=6.3959(2) Å.

|            | 0×10 <sup>5</sup> | (Å <sup>-2</sup> ). | <b>7</b> |             |                      | Q×10 <sup>5</sup> | (Å <sup>-2</sup> ), | T-4  | nsity                                |
|------------|-------------------|---------------------|----------|-------------|----------------------|-------------------|---------------------|------|--------------------------------------|
|            | QXIO-             | (A _ )              |          | ensity      |                      |                   | (A, ).              |      |                                      |
| hk1        | obs.              | calc.               | 008      | . calc.     | <u>hkl</u>           | obs.              | colc.               | ops. | calc.                                |
| 1 01       | 3615              | 3609                | 2        | 1           | 411                  | ŧ                 | 22884               | -    | 9                                    |
| 011        | 4245              | 4247                | -        | 3           | 103                  | 23168             | 23166               | 23   | 21                                   |
| 200        |                   | 4659                | -        | 0           | 231                  |                   | 23322               | -    | 9                                    |
| 111        |                   | 5411                |          | Ó           | 013                  | 23801             | 23803               | 5    | 6                                    |
| 210        |                   | 6461                | -        | 1           | 113                  |                   | 24968               | -    | Ó                                    |
| 201        |                   | 7104                | -        | 0           | 420                  | 25847             | 25846               | 62   | 66                                   |
| 020        |                   | 7208                | -        | 0           | 203                  | 26660             | 26660               | 33   | 19                                   |
| 211        | 8911              | 8906                | 4        | 4           | 132                  | 27166°            | 27161               | 4    | 6                                    |
| 002        | 9779              | 9778                | 4        | 4           | 3 22<br>4 21<br>4 02 | 27487             | 27470               | -    | 4                                    |
| 002<br>121 | 10814             | 10818               | 28       | 16          | 421                  | 28290             | 28290               | 19   | 7                                    |
| 102        | 10947°            | 10943               |          |             | 402                  |                   | 28416               | -    | 1                                    |
| 220        | 11865             | 11868               | 15       | 5<br>5<br>2 | 213                  | 28459             | 28462               | 51   | 34                                   |
| 112        | 12746             | 12745               | 3        | Ž           | 040                  | 28835             | 28833               | 56   | 70                                   |
| 301        | 12926             | 12928               | 45       | 27          | 331                  |                   | 29147               | -    |                                      |
| 221        | 14301             | 14312               |          |             | 412                  |                   | 30218               | -    | i                                    |
| 202        |                   | 14437               | -        | 3           | 1 23                 |                   | 30374               | -    | 2                                    |
| 311        |                   | 14730               | -        | 6<br>3<br>1 | 232                  | 30657             | 30656               | -    | 6                                    |
| 212        |                   | 16239               |          | 2           | 501                  |                   | 31566               | -    | ž                                    |
| 022        |                   | 16986               | -        | ŏ           | 141                  |                   | 32442               | -    | Ī                                    |
| 122        | 18147             | 18151               | 85       | 94          | 303                  |                   | 32484               | -    | 3<br>1<br>2<br>6<br>3<br>1<br>2<br>2 |
| 400        |                   | 18637               | -        | 6           | 511                  |                   | 33368               | -    | 2                                    |
| 031        | 18662             | 18663               | 39       | 21          | 240                  |                   | 33492               | -    | ō                                    |
| 131        | 19829             | 19828               | ĬĬ       | 7           | 223                  | 33878             | 33868               | 33   | 44                                   |
| 321        | 20137             | 20136               | 39       | 50          | 313                  | 34286             | 34286               | -    | 1                                    |
| 302        | 20257             | 20262               | ĬĬ       | 24          | 430                  | 34854             | 34856               | -    | 10                                   |
| 410        | 20443             | 20439               | 12       | ï           | 422                  |                   | 35624               |      | 7                                    |
| 230        | 4                 | 20878               | •        | ż           | 241                  | e                 | 35937               | -    | 7 2                                  |
| 401        | 21086             | 21 082              | 29       | 48          | 332                  | 36479             | 36480               | 30   | 15                                   |
| 222        | 21647             | 21646               | 92       | 100         | 431                  | 37308             | 37300               | 3    | 2                                    |
| 312        | 22059             | 22064               | íõ       | 3           |                      | 2 344             |                     | -    | -                                    |

<sup>\*)</sup> Atomic coordinates taken from B-Yb<sub>5</sub>Sb<sub>3</sub>

and an absorption correction applied. In order to correct for extinction effects only reflexions having identical indices were averaged.

Acta Chem. Scand. A 30 (1976) No. 5

A series of least-squares refinements was started. The function minimized was

$$w(|F_0| - |F_0|)^2$$
, where  $w^{-1} = \sigma^2 + (p|F_0|)^2$ 

 $\sigma$  is the standard deviation of  $F_0$ , based on counting statistics, and p = 0.01 is an empirical factor. Eleven reflexions were excluded due to obviously misread data, and the (040) reflexion was excluded because it behaved inconsistently during measurement and because it was probably strongly influenced by extinction effects. Reflexions with 'negative intensities' were omitted. An extinction correction according to Coppens and Hamilton,12 based on approximations introduced by Zachariasen, was applied to the rest of the material. The isotropic temperature factors of two vanadium atoms were found to be somewhat larger than expected; the occupancy factors of these two positions were allowed to vary as the observation of cell parameter variations had indicated the probability of structure defects. Finally, anisotropic temperature factors were introduced. After convergence, the following discrepancy indices were obtained (3547 reflexions):

$$R(F) = 0.035$$
, where  $R(F) = \sum ||F_0| - |F_c||/\sum |F_0|$   
and

$$R_w(F) = 0.035$$
, where  $R_w(F) = [\sum w(|F_0| - |F_0|)^2/\sum w|F_0|^2]^{\frac{1}{2}}$ 

In line with the suggestion of Hirshfeld and Rabinovich <sup>13</sup> a final refinement was made based on  $F^2$  rather than on F, including reflexions with 'negative intensities' to preserve the assumed normal distribution in the intensity data. For the 3645 reflexions refined the following R-values were obtained,  $R(F^2) = 0.038$  and  $R_w(F^2) = 0.059$ , defined in a similar manner as above, only that  $F^2$  replaces F in the formulae. The corresponding R(F) was 0.034. No significant change in parameter values was found, but the standard deviations were somewhat lower than for the F refinement.

At this stage it was felt, that because of expected strong correlations between many of the parameters, any further refinement assuming the non-centrosymmetric  $Pn2_1a$  symmetry would not be worthwhile. The very close agreement between the observed and

a) Overlapped by Si b) Overlapped by Ge c) Overlapped by CrAs

including anisotropic thermal parameters  $\theta_{ii}(\times 10^5)$ . The form of the temperature factor is Table 4. Structure data for R.V.

| $\sin x = 0$                                   | $\exp\left(-\beta_{11}h^2 - \beta_{22}k^2 \dots - 2\beta_{12}h\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-2\beta_{12}hk$ ). Standar             | the.). Standard deviations within brackets.                        | within brackets                               | B.                                                                               |                                                          |                                                          |                                                          |                                                                                   |                                                         |                                                                        |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|
| Atom                                           | Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Occupancy (%)                           | 8                                                                  | 'n                                            | ы                                                                                | $\beta_{11}$                                             | $\beta_{23}$                                             | β38                                                      | $\beta_{18}$                                                                      | $eta_{13}$                                              | β18                                                                    |
| V(1)<br>V(2)<br>V(3)<br>V(4)<br>As(1)<br>As(2) | 88 de 48 de | 100<br>99.1(2)<br>94.6(2)<br>100<br>100 | 0.20848(4)<br>0.14603(6)<br>0.28572(7)<br>0.45513(6)<br>0.07048(2) | 0.55282(4)<br>1/4<br>1/4<br>1/4<br>0.50822(2) | 0.06395(3)<br>0.78443(4)<br>0.26722(4)<br>0.01131(4)<br>0.32661(2)<br>0.04406(3) | 243(4)<br>364(7)<br>333(7)<br>275(6)<br>290(3)<br>248(4) | 230(3)<br>303(5)<br>365(6)<br>193(4)<br>229(2)<br>219(3) | 159(2)<br>158(3)<br>142(4)<br>127(3)<br>126(1)<br>148(2) | $egin{array}{c} 21(3) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -25(2) & 0 & 0 \end{array}$ | -21(2)<br>-33(4)<br>-46(4)<br>-14(3)<br>13(1)<br>-28(2) | $\begin{array}{c} 11(2) \\ 0 \\ 0 \\ 0 \\ 0 \\ -1(1) \\ 0 \end{array}$ |

calculated structure factors implies that any deviation from centrosymmetry must be negligibly small, and the final structure is accordingly described in the terms of Pnma symmetry as presented in Table 4 (with parameter values taken from the  $F^2$  refinement). A list of observed and calculated structure factors can be obtained from the author on request.

### THE STRUCTURES OF y-V, As, AND Cr, As,

When the  $\beta$ -V<sub>s</sub>As<sub>s</sub> structure had been determined it was seen to resemble closely the  $\beta$ -Yb,Sb, structure,4 the two compounds nevertheless representing different structure types. It appeared, however, that \(\beta\text{-Yb}\_{\beta}\text{Sb}\_{\beta}\) might be truly isotypic with y-V<sub>5</sub>As<sub>3</sub> and Cr<sub>5</sub>As<sub>3</sub>. Powder intensity calculations were accordingly performed for the two arsenides, assuming this isotypism and using the atomic coordinates of β-Yb, Sb, as given by Brunton and Steinfink. A satisfactory agreement was found between observed and calculated intensities for both arsenides as presented in Tables 2 and 3, leaving no doubt that the three compounds are isostructural.

### STRUCTURAL DESCRIPTIONS AND DISCUSSION

A projection of the β-V<sub>s</sub>As<sub>s</sub> structure along the b-axis is illustrated in Fig. 1a. The coordination around As(1) may be characterized by a trigonal prismatic arrangement of metal atoms with three further atoms outside the prism faces. A closer look at the distances reveals that the trigonal prism is indeed very distorted; from this point of view the coordination is characterized better by the coordination number 8. The coordination polyhedron around As(2) is much more regular, a bisdisphenoidal arrangement with coordination number 8. Interatomic distances are presented in Table 5. The distances between unlike atoms in  $\beta$ -V<sub>5</sub>As<sub>3</sub> are similar to those found in  $\alpha$ -V<sub>4</sub>As<sub>3</sub> <sup>14</sup> and  $\beta$ -V<sub>4</sub>As<sub>3</sub>. The V(3) - V(4) distance of 2.61 Å is rather short, but the V(3) site is not fully occupied. Still shorter metal contacts are found in a-V,As, (2.40 Å) and V<sub>2</sub>As (2.38 Å). In these two arsenides the metal atoms form straight infinite chains, but there are no data, as to the occupancy in these phases albeit cell parameter

Acta Chem. Scand. A 30 (1976) No. 5

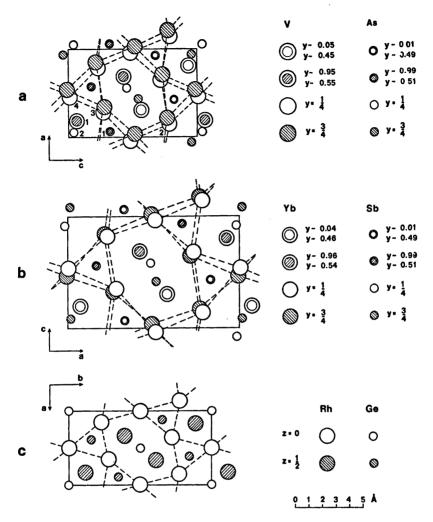



Fig. 1. The crystal structures of (a)  $\beta$ -V<sub>5</sub>As<sub>3</sub> and (b)  $\beta$ -Yb<sub>5</sub>Sb<sub>3</sub> projected along the b-axes, and c) Rh<sub>5</sub>Ge<sub>3</sub> projected along the c-axis.

variations indicate the possibility of vacancies in both.

There is a striking resemblance between the  $\beta$ -V<sub>5</sub>As<sub>3</sub> structure and the  $\beta$ -Yb<sub>5</sub>Sb<sub>3</sub> structure, the latter being illustrated in Fig. 1b. There is also a close relationship to the Rh<sub>5</sub>Ge<sub>3</sub> structure <sup>16</sup> illustrated in Fig. 1c; this fact was already recognized by Brunton and Steinfink in the case of  $\beta$ -Yb<sub>5</sub>Sb<sub>3</sub>. Owing to the lack of positional parameter data for  $\gamma$ -V<sub>5</sub>As<sub>3</sub>, no closer comparison can be made as regards distances and coordination in the orthorhombic V<sub>5</sub>As<sub>3</sub> polymorphs.

Acta Chem. Scand. A 30 (1976) No. 5

Cell dimension variations  $^3$  of  $\beta$ -V $_5$ As $_3$  indicated a homogeneity range. In quenched specimens the cell volume was smaller, which could be interpreted as an increasing tendency to vacancy formation at higher temperatures. The a and b axes decrease and the c axis increases with decreasing volume. The structure refinement supported this view, indicating vanadium deficiency, the composition of the investigated crystal being V $_{4.94}$ As $_3$ .

β-V<sub>5</sub>As, is most probably isotypic with Y<sub>5</sub>Bi, reported by Schmidt *et al.*, <sup>17</sup> as well as with a further number of rare-earth bismuthides

Table 5. Interatomic distances (Å) for  $\beta$ -V<sub>4,94</sub>As<sub>3</sub>. The maximum standard deviation obtained was 0.0006 Å. Distances shorter than 3.5 Å are listed.

| V(1) - As(8)                                         | 2.492 | V(4) - 2 As(1)      | 2.532                 |
|------------------------------------------------------|-------|---------------------|-----------------------|
| As(2)                                                | 2.526 | As(2)               | 2.576                 |
| As(1)                                                | 2.566 | 2 As(1)             | 2.597                 |
| $\mathbf{As}(1)$                                     | 2.665 | V(3)                | 2.615                 |
| As(1)                                                | 2.618 | 2  V(1)             | $\frac{2.013}{2.734}$ |
|                                                      |       | 2 V(1)<br>2 V(1)    |                       |
| V(2)                                                 | 2.713 |                     | 2.858                 |
| V(4)                                                 | 2.734 | V(2)                | 2.898                 |
| V(4)                                                 | 2.858 | $\frac{V(3)}{V(3)}$ | 2.960                 |
| $\mathbf{V}(1)$                                      | 3.027 | V(2)                | 3.009                 |
| $\mathbf{V}(3)$                                      | 3.035 | ==                  |                       |
| $\mathbf{V}(1)$                                      | 3.046 | As(1) - V(3)        | 2.481                 |
| $\mathbf{V}(2)$                                      | 3.080 | V(4)                | 2.532                 |
| V(3)                                                 | 3.144 | V(2)                | 2.540                 |
|                                                      |       | V(1)                | 2.566                 |
|                                                      |       | V(4)                | 2.597                 |
| V(2) - As(2)                                         | 2.477 | V(1)                | 2.618                 |
| 2 As(1)                                              | 2.540 | V(2)                | 2.633                 |
| 2 As(1)                                              | 2.633 | $\mathbf{V}(1)$     | 2.665                 |
| 2 V(1)                                               | 2.713 | $\mathbf{V}(3)$     | 2.838                 |
| V(4)                                                 | 2.898 | As(2)               | 3.289                 |
| $\mathbf{V}(4)$                                      | 3.009 | As(1)               | 3.348                 |
|                                                      | 3.080 | (-,                 |                       |
| $egin{array}{ccc} 2 & V(1) \ 2 & V(2) \ \end{array}$ | 3.283 |                     |                       |
| - '(-)                                               | 0.200 | As(2) - V(2)        | 2.477                 |
|                                                      |       | $\mathbf{V}(3)$     | 2.478                 |
| V(3) - As(2)                                         | 2.478 |                     | 2.498                 |
| 2 As(1)                                              | 2.481 | 2 V(1)<br>2 V(1)    | 2.526                 |
| As(2)                                                | 2.539 | V(3)                | 2.539                 |
| V(4)                                                 | 2.615 | V(4)                | 2.576                 |
| 2 As(1)                                              | 2.838 | 2 As(1)             | 3.289                 |
| V(4)                                                 | 2.960 | 2 AS(1)             | 0.200                 |
|                                                      | 3.035 |                     |                       |
| 2 V(1)<br>2 V(1)                                     | 3.144 |                     |                       |
|                                                      |       |                     |                       |
| 2 V(3)                                               | 3.236 |                     |                       |
|                                                      |       |                     |                       |

recently reported by Yoshihara et al.18 Schmidt et al. gave the composition of 37.8 at.% Bi (corresponding to the formula Y4,94Bi3) for a homogeneous single phase sample. This indicates that analogous metal vacancy distributions might occur in β-V<sub>s</sub>As<sub>3</sub> and Y<sub>5</sub>Bi<sub>2</sub>. Yoshihara et al., however, assign the formula  $R_{s+z}Bi_s$ to their compounds, indicating deviations from the ideal composition towards the metal-rich side.

No range of homogeneity was detectable for y-V<sub>s</sub>As<sub>s</sub>. This corresponds to the results for the isostructural \(\beta\text{-Yb}\_8\text{Sb}\_3\), which was found to be strictly stoichiometric.4

The small amounts of homogeneous material available did not permit a conventional chemical analysis. An attempt to perform microprobe analyses on the very crystal examined

and on y-V<sub>5</sub>As<sub>3</sub> failed to detect any significant deviations from the stoichiometric composition. The relative error of a microprobe analysis is of the same magnitude as the proposed deviation in composition.

α-V<sub>5</sub>As, appears to form narrow two-phase regions with  $\beta$ - and  $\gamma$ -V<sub>5</sub>As<sub>3</sub>, with  $\alpha$ -V<sub>5</sub>As<sub>3</sub> as the most metal-rich component. Its cell volume is considerably smaller than that of the orthorhombic phases and has been found to vary, indicating non-stoichiometry. The variations affect the c-axis to the greatest extent. It is therefore likely that a vacancy mechanism involving a variable occupancy of the 4a or 4b positions (space group I4/mcm) is responsible for this behaviour. A complete single-crystal analysis has been started in order to study this problem. The results will be presented in a forthcoming paper.

In comparing the V-As and Cr-As systems it is notable that, when vanadium arsenide polymorphs exist, only the structure types adopted by the high-temperature phases are represented in the Cr-As system. This is illustrated by the couples Cr<sub>4</sub>As<sub>3</sub>-β-V<sub>4</sub>As<sub>3</sub> (Cr<sub>4</sub>As<sub>3</sub> type) and Cr<sub>5</sub>As<sub>3</sub> -  $\gamma$ -V<sub>5</sub>As<sub>3</sub> ( $\beta$ -Yb<sub>5</sub>Sb<sub>3</sub> type).

Acknowledgements. The author wishes to thank Professor Ivar Olovsson for all facilities put at his disposal and is indebted to Professor Stig Rundqvist for valuable discussions and comments. This work has been financially supported by the Swedish Natural Science Research

#### REFERENCES

- Boller, H. and Nowotny, H. Monatsh. Chem. 97 (1966) 1053.
- 2. Boller, H. and Nowotny, H. Monatsh. Chem. 98 (1967) 2127.
- 3. Berger, R. Acta Chem. Scand. A 29 (1975) 641.
- Brunton, G. D. and Steinfink, H. Inorg. Chem. 10 (1971) 2301.
- 5. Berger, R. Acta Chem. Scand. A 28 (1974) 771.
- 6. Deslattes, R. D. and Henins, A. Phys.
- Rev. Lett. 31 (1973) 972.
  7. Baker, J. F. C. and Hart, M. Acta Crystallogr. A 31 (1975) 364.
- 8. Malmros, G. and Werner, P.-E. Acta Chem. Scand. 27 (1973) 493.
- 9. Lundgren, J.-O., Ed., Crystallographic Computer Programs, Institute of Chemistry,

Acta Chem. Scand. A 30 (1976) No. 5

369

- University of Uppsala, Uppsala 1975 UUIC-B13-04-2.
- Hanson, H. P., Herman, F., Lea, J. D. and Skillman, S. Acta Crystallogr. 17 (1964)
- 11. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham 1968, Vol. III.
- 12. Coppens, P. and Hamilton, W. C. Acta
- Crystallogr. A 26 (1970) 71.

  13. Hirshfeld, F. L. and Rabinovich, D. Acta
- Crystallogr. A 29 (1973) 510.

  14. Yvon, K. and Boller, H. Monatsh. Chem. 103 (1972) 1643.
- 15. Bachmayer, K. and Nowotny, H. Monatsh. Chem. 86 (1955) 741.
- 16. Geller, S. Acta Crystallogr. 8 (1955) 15.
- 17. Schmidt, F. A., McMasters, O. D. and Lichtenberg, R. R. J. Less-Common Met. 18 (1969) 215.
- Yoshihara, K., Taylor, J. B., Calvert, L. D. and Despault, J. G. J. Less-Common Met. 41 (1975) 329.

Received November 18, 1975.