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Theory for the Determina_tion of Vapour Pressures by the_

Transpiratioh Method
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Equations valid for coupled diffusion and
viscous flow are applied to the case of the
transpiration experiment. The results presented
in this paper do not assume a uniform total
pressure in the apparatus, in contrast with
the theory developed by Merten. A theory
is presented for the diffusion of the sample
vapour in opposition to the flow of carrier
gas in the carrier gas entrance. Results from
this theory are compared with those of Merten.

Recommendations for users of the transpira-
tion method are given.

The transpiration method is one of the simplest
and most versatile methods for vapour pressure
determinations at high temperatures.*~ The
apparatus is simple and is shown schematically
in Fig. 1. In principle, a carrier gas, which
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may be inert or reactive, is passed over or
through the condensed sample under investiga-
tion in a constant temperature zone and with
a constant flow rate of carrier gas. The flow
is desired to be sufficiently slow so that the
carrier gas is saturated with the vapour, which
is condensed at some point ‘‘downstream’
from the sample. The vapour pressure may be
found by determination of the mass of vapour
carried away by a known volume of carrier
gas in a known time period, provided the molec-
ular weight of the vapour is known. Conversely,
when the molecular weight of the vapour is
not known, it may be evaluated from observa-
tions by the transpiration method in combina-
tion with vapour pressure measurements by
some other method. Thus, the transpiration
method represents a valuable adjunct to the
“boiling point” method, the theory of which
is discussed in a subsequent paper.* Although
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Fig. 1. Schematic diagram of the isothermal part of the apparatus used in a transpiration

experiment.
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experimentally quite different, the theories
of these two methods have several features in
common. It is the purpose of the present
paper to present a consistent theory of the tran-
spiration method.

As the flow rate of carrier gas, %,, is varied,
three regions of interest can be described.
They are: 1. very small 7,, a considerable
amount of sample vapour is transported by
a diffusion mechanism as well as by bulk
hydrodynamic flow, 2. moderate 17,, most
vapour transport is dependent on bulk hydro-
dynamic flow, and 3. large #,, the gas in the
sample compartment is not saturated with
sample vapour.

The case in which the flow of carrier gas is
so rapid that it is no longer saturated in
the sample compartment, region 3 above,
has been considered in detail by Hofmeister,
Haeseler, and Glemser.® Merten and Bell ? have
discussed the kinetic aspects of the transpira-
tion method, and found that at high flow rates,
saturation of the carrier gas may be prevented
by incomplete mixing in the gas stream or
by insufficiently rapid vaporization of the
sample. For the latter case these authors
considered the application of the Langmuir
equation, including a vaporization coefficient,
for values of the rate of vaporization of the
condensed sample. This case will not be con-
sidered further in this paper.

The flow of sample vapour in regions I and
2 can be considered together in the treatment
to be presented since, in addition to bulk
hydrodynamic flow, diffusive flow always
occurs, This diffusion increases the total
mass transport from the condensed sample,
and is consequently of importance for the

vapour pressure determination.
everal attempts have been made to give a

quantitative description of the diffusion effects
in the transpiration method.’*® In the present
paper we will discuss the theory of this method,
based on the proper definitions of diffusion
and laminar viscous flow. Furthermore, diffu-
sion in both the “upstream’’ and ‘“downstream”
directions will be considered.

THEORY

Case 1. Flow of vapour through exit capillary.
We have discussed elsewhere ¢ the equations for

coupled diffusion and viscous flow. The appro-
priate equation for a binary system is

Jij= — De(day/dz) + cap (1)

where J; is the flux of species i in mol s cm™*
in the 2z direction, z; is the mol fraction of
species i, ¢ is the total gas concentration in
mol em™®, v is the mean molecular velocity
in the z direction, and D is the gaseous diffusi-
vity coefficient.%9%®

Let subscripts 1 and 2 represent the two
gaseous species in the transpiration experiment,
carrier gas and sample vapour, respectively.

Experimentally one considers the case of
a uniform temperature and a uniform flow
rate of carrier gas. One wishes to interrelate
the flux of sample vapour, J,, to the equilibrium
vapour pressure of the sample.

One may solve the differential equation (1)
and obtain as a solution

#a= (ofon)[1 ~exp (v2[De)] + oy oxp (02[De)

where @, is the value of the mol fraction of the
vapour at z=2z and zy is the value at z=0.
Consider the case of z=1[, and assume that
the sample vapour is dissipated completely
at the end of the capillary. This assumption
may be represented by z,=0. For this case,
rearrangement of eqn. (2) gives

Jy=2yov/[1 - exp (—ecvl/De)] @)

In our subsequent paper,! we show that v
is the sum of two velocities; t.e., vqg and v,
where v, is a velocity caused by diffusion and
v, i8 a velocity caused by a pressure gradient.
These velocities are

= DPl-y) :
vq TFod1=7) (dz,/d2) (4)
and
vy=(—1'/87)(dP/dz) (8)

where y=V M,/ M,, M; is the molecular
weight, P is the pressure, r is the capillary
radius and » is the viscosity. Replacing v in
the numerator of eqn. (3) with eqns. (4) and
(8), one has

D(1-y) _
”"“(m:;) (de,/dz) ("’/8'1)(dP/dz)

1—exp (—cvl/Dc)

Jy=
(6)
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Eqn. (6) may be rearranged and integrated
over z, #; and P with values valid from the
capillary entrance to the capillary exit. Assume
that both gases are ideal, and that D and »
are independent of z. With Dalton’s law applied
to the sample compartment, the ratio of the
sample equilibrium vapour pressure to the
total pressure is Py/Pj=z,, and one obtains

Pyt =2y P+ (161 RT 2yl [r*{J[1 - exp (— (J, +
Ja)l/De)] + (x4 D’[IRT) In [1 —25(1~ 7)1} (7

where P; is the pressure at the exit of the
capillary and D’ is DP. Replacing cv in the
numerator of eqn. (3) by the equation

Jy+Jg=cv (8)

which may be derived from eqn. (1) by use of
the simple properties of the mol fraction, one has

zy=(J3/(J 1+ J3))[1 - exp (—cvi/De)] 9

We identify terms assumed to be constant in
eqns. (7) and (9) by

A=artD’'|RTI (10)
and

C=ar'/{(16RTn) (11)
Introducing also the equation

Jy=rig/(r%) (12)

where 7 is the flow rate of species i in mol s,
we may rewrite eqns. (7) and (9) as

Pyt =z {Pg + (14,4 %,)/C +

(4/C) In [1~zy(1-7)]} (13)
and
Zyy=[1hg/(rdy +74)][1 —€XPp (— (3, +7,)/A)]  (14)

Eqns, (13) and (14) give a relationship valid
for the calculation of the sample equilibrium
vapour pressure, Py, at temperature 7' as
determined by the two flow rates 7, and 4,.
These equations consider flow of materials
only through the exit capillary of the apparatus.
A direct application could be made to the
experimental case in which the sample vapour
transport, 7,, is determined from the conden-
sate in the ‘“‘downstream’ cold region of the
apparatus. In this case the only measured
values of #, are for flow in the exit capillary.
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It is of interest to discuss the value of 7,
when the flow of carrier gas goes to zero, 1, =0.
In this case from eqns. (13) and (14) one has

Pyt =234 P+1,/C+ (4/0) In [1—zy4(1 -]}
(13z)
and

Zyy=1—exp (—1,/A4) (14z)

These equations are exactly the same as those
derived by us in a subsequent paper,* in which
we consider the experimental case of #,=0.

Case 2. Flow of sample vapour through both
entrance and exit capillaries. In addition to
the flow and diffusion of carrier gas and sample
vapour in the exit capillary, sample vapour
may diffuse “upstream” through the entrance
capillary. This effect may be important in
experimental cases in which the sample vapour
transport, #%,, is determined by measuring
the mass loss of the sample.

For the entrance capillary we consider the
2’ coordinate as shown in Fig. 1. It is to be
noted that when sample vapour leaves the
apparatus through the entrance capillary with
this choice of z’ coordinate, #,>0, whereas
7, < 0 because the carrier gas is flowing toward
negative z’. For the entrance capillary, equa-
tions (13) and (14) should be applicable with
the replacement of #, by —s,. Thus,

Py =23 Pt + (thge —111)/Ce+

(4./C¢) In [1 —z4(1 - y)]} (13e)

and

@y = [thge/(tge —11,)][1 —0XP (= (thge —14,1)/4,)]
(14e)

A subscript e has been added to quantities
which will be different for the entrance capillary
from those of the exit capillary. The quantities
x5 and Py are the same for both sets of equa-
tions since these quantities apply to the
sample compartment. It is assumed that the
gas in the sample compartment is of uniform
composition and pressure.

By equating (14) and (14e) one obtains a
relationship between 7, and i, and one is
able to calculate the amount of sample vapour
transported by diffusion through the entrance
capillary.

Two cases are of interest:

Case A. 7,=0. This gives
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TigefAe=11sf/A (15)
With equal capillary dimensions, 4.,=A4 and
thge = g

Case B. %,>0, 7, 5. In this case one has

— (fige/111)[1 — 0P (1,/4.)] =

(7iaf711)[1 —eXp (—1,/A)] (16)
and if %,>4, then
Toge =143 OXP (—ﬁllAe) (17)

Clearly the equation resulting from the
addition of (13) to (13e) is very complex, and
its application is not practical since it contains
too many unknown parameters.

DISCUSSION

Reduction to Merten’s theory. Merten ® has
presented a theoretical approach to the transpi-
ration experiment. He assumed that the pres-
sure is uniform throughout the transpiration
apparatus. One may obtain Merten’s equation
from equations (13) and (14) by assuming that
C=0 and that 7#,>7%,. The assumption that
C=o00 is equivalent to assuming that n=0;
i.e., the gas has no viscosity. With no viscosity
there would be no resistance to flow of gas,
and no pressure gradient would result. From
the assumption that #,>%, one neglects 7,
in terms in which the sum of 7, and 7, appears.
Thus, equations (13) and (14) reduce to

fg=i, L2 [1 —exp (--rz,/A)]_1

2 (18)

which is Merten’s equation.

The main advantage of the present theoretical
development is that no assumption regarding
uniform pressure is made. In most experiments
pressure gradients are not evaluated, and it
would be extremely difficult to make the
necessary measurements. In order to have
large flow rates of carrier gas, a pressure
gradient is required. The assumption of no
pressure gradient appears to be somewhat
unrealistic.

Comparison of results of theories. In Fig. 2
are given calculated curves of the vapour
flow rate 7, vs. carrier gas flow rate 7, which
were generated by the equations for the follow-
ing cases: 1, the present theoretical development

1 L ) L

0 100 200 300 400 #y 500

Fig. 2. Calculated curves of vapour flow rate
iy v8. carrier gas flow rate 7, in a transpiration
experiment. )

1. Present theory, diffusion through exit
capillary only.

2. Present theory, diffusion through both
entrance and exit capillaries.

3. Merten’s ® theory, diffusion through exit
capillary only, and assuming no pressure
drop in the apparatus. ‘

considering only vapour flow from the exit
capillary, eqns. (13) and (14); 2, the results
given in case I above with the addition of
sample vapour transport through the carrier
gas entrance capillary, assuming the same A
value for both capillaries and 3, the results
given by Merten’s eqn. (18) assuming that
there is no pressure drop in the apparatus.
The same values for Py, P; and 4 were used
for all three curves.

In comparing the resulting curves of cases
1 and 3, one notes that the curves are identical
at small flow rates of carrier gas, 7, small.
This is a reasonable result since the effect
of viscous flow caused by a pressure gradient
should be small when 4, is small.

At large flow rates of carrier gas, 7, large,
the neglect of the viscosity of the wvapour
causes a difference between the two curves.
It is reasonable that the difference between
the two curves increases with increasing 7,
since a larger pressure gradient is needed to
cause the flow, and the effect of viscous flow will
increase. v :

. At larger flow rates of carrier gas, one may
neglect the effect of wvapour transport by
diffusion. In the equations this may be done
by setting 4=0. Eqn. (13) then reduces to
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Ny =0,

(Pg+ %’“)* —Py (19)

and Merten’s equation, eqn. (18), reduces to

mﬂ%‘ (20)
b4

With fixed values of Py, P,; and C, one may see
that the dependence of %, on 7, in our theory
is non-linear, whereas there is a linear depend-
ence in Merten’s theory.

Thus, with the present theoretical develop-
ment, data in the large 7, range are not linear.
A straight line through this apparently linear
range will have a non-zero intercept. This is
contrasted with an actual zero intercept in
Merten’s theory.

Merten’s assumption that C =00 gives a too
low value for P,, while his assumption that
7, >, causes a too high value. In most practical
cases the former effect is the larger. From
the calculated curve 1 in Fig. 2 the difference
between the pressure values from the two
theories is about 10 9%,. Since C is proportional
to r* [eqn. (11)], a smaller capillary radius
will favour our theory.

We are presently performing measurements
to determine experimentally the significance
of our theory in relation to that of Merten.

The effect of diffusion. Diffusion of vapour
through the entrance capillary in opposition
to the flow direction of the carrier gas has been
mentioned by Merten and Bell.? In the present
paper the first attempt has been made to
evaluate the contribution of the back diffusion.

In viewing curves I and 2 in Fig. 2, one notes
that the gaseous diffusion through the entrance
capillary does make a significant contribution
to the vapour flow rate at small values of #,.
For 7,=0, the transport of sample vapour
is increased with a factor of 2, when the capillary
dimensions are equal.

At large flow rates of carrier gas, however,
the diffusion contribution becomes very small.
In both Merten’s ® and the present theoretical
development terms of the type [l1—exp
(—1,/4)] or [1—exp(~— (%, +%,)/A)] are related
to the diffusion transport mechanism. Thus,
when the exponential expression is small
compared to unity, diffusion may be neglected,
e.g., diffusion contributes less than 5 %, to the
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transport” of samplé vapour when: 7%,/4> 3.
From this discussion the nearly linear range
of carrier gas flow rates for which the diffusion
contribution is -small, is determined by the
parameter 4. According to eqn. (10), 4 is
dependent on 7, I, T', and D’. From the kinetic
theory of gases it is expected that D’ is propor-
tional to 7T'/2, but is independent of pressure.
Thus, the parameter 4 should be dependent on
r2T%l; and the nearly linear range of carrier
gas flow rates should depend on the capillary
dimensions and the square root of temperature.
This means that the equilibrium vapour pres-
sure of the sample is of little importance for
the determination of this range. »
Recommendations for users of the transpira-
tion method. In using the transpiration method
for determining equilibrium vapour pressures,
one should do the following.
. 1. One should determine experimentally
a curve of the type shown in Fig. 2. This
requires - experimental determinations of 7,
at varying 7, with fixed temperature 7' and
hence fixed P,. This curve will delineate the
nearly linear range, which is desired for labora-
tory measurements, from the diffusion range
at small %, and from the desaturation range
at large #,. (In principle, by avoiding the desat-
uration range, the equilibrium vapour pressure
P, and the parameters .4 and C could be
determined from any set of 7%, %, and P
data by fitting eqns. (13) and (14) to the data.)
2. From the data acquired above for the
nearly linear range (small diffusion and no
desaturation), determine the values of P,; and
C by a non-linear least squares computer
program using eqn. (19). '
3. Restrict measurements for vapour pres.-
sure determinations to 7, values in the nearly
linear range. Rearranging eqn. (19), one has

b (o Bati)!

%y 41,

Py= (21)

Use eqn. (21) to calculate the equilibrium
vapour pressure at other temperatures.

In case the vapour pressure is known, the
data can be used to determine the molecular
weight of the vapour. One may use the equa-
tion

g =1,/ M, (22)
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where i, is the measured mass of vapour
carried away from the sample per unit time,
and M, is the molecular weight of the vapour.
By inserting eqn. (22) into eqn. (21), one may
use the same procedure as described above
to determine the molecular weight of the va-

pour.
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