The Structure of Caperatic Acid

SVANTE BRANDANGE, LARS MÖRCH and STAFFAN VALLÉN

Department of Organic Chemistry, Arrhenius Laboratory, University of Stockholm, S-104 05 Stockholm, Sweden

The lichen compound caperatic acid (1) was first isolated from Parmelia caperata in 1897, and has subsequently been found in many other lichens.5 Zopf isolated an acid believed to be 1 from Cetraria glauca and Mycoblastus sanguinarius, and we have now confirmed that 1 can be isolated from the former species. Asano and Ohta found that the acid is a monomethyl ester of 2-hydroxy-1,2,3-heptadecanecarboxylic acid, but the position of the methyl ester group has hitherto been unknown. We now report that caperatic acid has the structure 1.

\[
\text{HO} - \text{COOH} \\
\text{COOH} \\
\text{HO}^+ \text{CD}_{3} \text{COOCD}_{3} \\
\text{COOCD}_{3} \\
\text{HO}^+ \text{CD}_{3} \text{COOCD}_{3}
\]

This result is based upon a comparison of the mass spectra of the trimethyl ester 2 and its corresponding \text{d}_4-ester 3 (Scheme 1), and also upon a chemical degradation of 1. In the upper parts of the mass spectra of 2 and 3 there are, respectively, three and four prominent peaks, and from the \text{m/e} values of these peaks, the structure of caperatic acid was deduced (Scheme 1). Support for the degradation shown in Scheme 1 was obtained from high resolution mass spectrometry of 2 and from the existence of analogous prominent peaks in the mass spectra of homologous trimethyl alkylketones.7

In a corroborative chemical degradation, 1 was oxidized with sodium bismuthate, a reagent which oxidizes α-hydroxy carboxylic acids to aldehydes or ketones.8 An NMR spectrum of the crude reaction product suggested that its major component was methyl 3-oxo-octadecanoate, the decarboxylation product of the initially formed β-keto carboxylic acid.

A CD investigation has shown that caperatic acid forms a complex with molybdate (VI) at pH 5.7.7 This demonstrates that 1 contains a free α-hydroxy carboxylic acid group.

Experimental. Melting points are corrected. The NMR spectrum was recorded on a Varian XL-100 spectrometer and the mass spectra on a Varian MAT 311 instrument using the direct inlet system.

Isolation of 1 from Cetraria glauca. From 300 g of fresh lichen, collected 30 km northeast of Stockholm, 1.6 g of 1 was isolated. After four recrystallisations from ethanol the product melted at 132.5–134 °C (lit.6 m.p. 132–133.5 °C [α]_D^{25} = -15.5 °C (c=0.9, dioxane). An authentic sample of 1, isolated from Parmelia caperata, was obtained from L. Tibell, University of Upsala, and this sample showed [α]_D^{25} = -15.7 °C (c=0.6, dioxane). The optical rotations of 1 have previously been measured in chloroform,9,10 but we found that all samples of 1 were only slightly soluble in ordinary ethanol-stabilized chloroform (c<0.1). Reaction with diazomethane in ether solution afforded the trimethyl ester 2, m.p. 56–58 °C (from ethanol), lit.6 m.p. 56.5–57.5 °C. MS: \text{m/e} (rel. intensity) 371 (35), 339 (100), 270 (44), 101 (48), 87 (49), 43 (37).

The \text{d}_4-ester 3 was prepared by reaction of 1-\text{d}_4 with diazomethane-\text{d}_4. The former reactant was obtained by dissolving 1 in a mixture of CH_3OD (99% isotopic purity) and dry ether, followed by evaporation of the solvent. Diazomethane-\text{d}_4 was prepared largely after Hecht and Kozarich,11 but the N-nitrosomethylurea was replaced with N-methyl-N-nitroso-p-toluene-sulfonamide and, instead of using the dimethoxyethane solution, dry ether was added and the diazomethane-\text{d}_4 was distilled together with ether into a flask containing a little D_2O (99.7% isotopic purity). The water in the receiving flask was frozen out and the etheral layer was then added to 1-\text{d}_4. The resulting ether solution was washed with water, dried (Na_2SO_4) and concentrated. The product 3 was crystallised from ethanol, m.p. 55.5–

\[
\text{m/e} = 273 (69) \\
\text{m/e} = 339 (100) \\
\text{m/e} = 342 (79) \\
\text{[2: 270(44)]} \\
\text{[2: 339(100)]} \\
\text{[2: 371(35)]}
\]

Scheme 1.

56.5°C. MS: 374(71), 342(79), 339(100), 273(69), 101(33), 90(42).

Bismuthate oxidation of 1. A mixture of 1 (55 mg), sodium bismuthate (56 mg), and glacial acetic acid (2 ml) was warmed (35°C, 80 min) with stirring in a stoppered flask. The resulting solution was poured into a mixture of cold water (100 ml) and ether (50 ml). The ether layer was repeatedly washed with sodium hydrogen carbonate solution and then twice with water. After drying (Na₂SO₄) and concentration of the ether layer, and finally drying in a vacuum desiccator over night, a residue (27 mg) was obtained. The NMR spectrum of this residue (CDCl₃) displayed singlets at δ = 3.66 and 3.38, and triplet at δ = 2.46 (integrals approximately 35, 18 and 21 mm, respectively), which indicate the partial structure —CH₃—CH₂—CO—CH₂—COOCH₃. No peaks from an isomeric β-keto ester could be detected.

Acknowledgements. We thank Professor Rolf Santesson, Naturhistoriska Riksmuseet, Stockholm for identifying the lichen material, Dr. Leif Tibell, University of Uppsala, for a gift of caperatic acid, and Dr. Lennart Kenne for the MS investigations. This work was supported by the Swedish Natural Science Research Council.

Received June 27, 1975.