Short Communications

The Reaction between Diethyl Azodicarboxylate and Styrene in the Presence of a Radical Inhibitor*

GÖRAN AHLGREN, BJÖRN ÅKERMARK, JOANNA LEWANDOWSKA and ROBERT WAHREN

Department of Organic Chemistry, Royal Institute of Technology, S-100 44 Stockholm 70, Sweden

The ene reaction is generally considered to be a six-centred cyclic process, the double bond shift being concerted with transfer of allylic hydrogen. However, certain ene reactions involving azodicarboxylates show a radical behavior.1,2 In an earlier paper in this series, the addition of diethyl azodicarboxylate to cyclohexene was shown to take place via radical intermediates.³ An additional example of such behavior is presented here.

$$\begin{array}{c}
R = CO_2C_2H_5 & 1 & 2
\end{array}$$

The 2:1 adduct 2 between azodicarboxylate and styrene is formed via an ene reaction of the initial Diels-Alder 1:1 adduct 1.4 Qualitative kinetic studies now show that the formation of the adduct 2 is strongly inhibited when a radical inhibitor (t-butylresorcinol) is present in the reaction mixture. In fact, an aged mixture of styrene and t-butylresorcinol even failed to give the adduct 2 with diethyl azodicarboxylate. A kinetic study of the formation of the adduct 2 showed the reaction to be first order in styrene and first order in azodicarboxylate. The disappearance rate of styrene is unaffected by the presence of t-butylresorcinol in the reaction mixture. Thus, the formation of the intermediate 1 is the rate-determining step.* Furthermore, the effect of the radical inhibitor indicates that the subsequent ene reaction takes place to a significant extent via a radical chain mechanism. A related process seems to be the selfinduced free radical polymerisation of styrene. In that case, radicals are generated in the reaction between styrene and the Diels-Alder type dimer of styrene,5 a compound very similar to the intermediate 1.

Experimental. The kinetic experiments were run in ether solution at 25.0 ± 0.5 °C. The reaction flask was equipped with a rubber septum through which samples were withdrawn with a syringe at suitable intervals. Styrene was quantitatively determined by GLC and diethyl azodicarboxylate by UV measurements at 400 nm. GLC was done on a Varian 1200 gas chromatograph equipped with a Varian 480 integrator.

UV Spectra were determined with a Beckman Dk2-spectrophotometer.

- 1. Hoffman, H. M. R. Angew. Chem. Int. Ed. Engl. 8 (1969) 556.
- 2. Fahr, E. and Lind, H. Angew. Chem. Int. Ed. Engl. 5 (1966) 372. 3. Ahlgren, G., Åkermark, B. and Dahlquist, K.
- J. Acta Chem. Scand. 22 (1968) 1129.
- 4. Diels, O. and Alder, K. Justus Liebigs Ann. Chem. 450 (1926) 237.
- 5. Mehnert, P. Angew. Chem. Int. Ed. Engl. 13 (1974) 781.

Received February 25, 1975.

^{*} Cycloaddition Reactions, Part 7. Part 6: Ahlgren, G. and Åkermark, B. Tetrahedron Lett. (1974) 987.

^{*} Attempts to isolate the intermediate 1 have been unsuccessful.