Short Communications ## On the Crystal Structure of Tin(II) Bromide JAN ANDERSSON Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, P.O.Box, S-40220 Göteborg 5, Sweden A compound with the stoichiometric formula SnBr, was prepared by heating metallic tin with hydrobromic acid under reflux and then distilling off the constant boiling mixture of HBr-H₂O. The remaining dark brown liquid gave colourless transparent needles on cooling. X-Ray diffraction data were collected with Weissenberg techniques. The crystals have orthorhombic symmetry and belong to space group No. 62, *Pnma*, or No. 33, *Pna2*₁. The cell dimensions, as determined from Guinier powder diffraction data, are: a = 8.384(3) Å, b = 4.233(2) Å, c = 10.516(4) Å, V = 373.2 Å³ The unit cell contains 4 formula units. A three-dimensional Patterson synthesis was calculated from h0l and h1l Weissenberg data. Assuming all the atoms to occupy the point position $Pnma: \ 4(c), \ i.e. \pm (x, \frac{1}{4}, z), \pm (\frac{1}{2} - x, \frac{3}{4}, \frac{1}{2} + z)$ it was possible to explain all the peaks in the Patterson synthesis and to determine the x and z parameters of the atoms. A least squares refinement based on 138 h0l and h1l reflections yielded an R-value of 8.2 %. More data are to be collected. Fig. 1. shows a projection of the structure of SnBr₂ on the xz plane. Each tin is surrounded by eight bromine, six of which lie at the apices of a trigonal prism while the remaining two lie Table 1. Approximate atomic parameters for SnBr₂. | Atom | \boldsymbol{x} | $oldsymbol{y}$ | z | |------------------|------------------|----------------|--------| | Sn | 0.1336 | 0.2500 | 0.8350 | | Br(1) | 0.3305 | 0.2500 | 0.5506 | | $\mathbf{Br(2)}$ | 0.5117 | 0.2500 | 0.1855 | Fig. 1. A projection of the structure of SnBr₂ on the xz plane. outside prism faces. The configuration of bromine around tin in SnBr₂ is thus similar to that in 2SnBr₂.H₂O,² 6SnBr₂.5H₂O,³ and 3SnBr₂.H₂O.⁴ Since SnCl₂ is isomorphous with PbBr₂ it might be expected that SnBr₂ was also isomorphous with PbBr₂. The tin and lead coordination polyhedra are fairly similar in SnCl₂, SnBr₂ and PbBr₂, *i.e.*, trigonal prisms with anions outside the centers of prism faces, but Sn is eight-coordinated in SnBr₂ whereas Sn and Pb are nine-coordinated in SnCl₂ and PbBr₂. In SnBr, the five bromine nearest to tin are at 2.81, 2.90, 2.90, 3.11, 3.11 Å. These five bromine form a polyhedron similar to the tetragonal pyramide of bromine around tin in NH₄SnBr₃.H₂O.⁵ This work has been supported financially by the Swedish Natural Science Research Council, Contract No. 2318. - International Tables for X-Ray Crystallography, 2nd Ed., Kynoch Press, Birmingham 1952, Vol. I. - Andersson, J. Acta Chem. Scand. 26 (1972) 1730. - Andersson, J. Acta Chem. Scand. 26 (1972) 2543. - 4. Andersson, J. Acta Chem. Scand. 26 (1972) 3813. - 5. Andersson, J. To be published. Received August 25, 1975.