Raman Spectra of Molten Mixtures Containing Aluminium Fluoride. II. Dissociation of AlF.

ERLING RYTTER a and SIGNE KJELSTRUP RATKJEb*

^a The University of Trondheim, Norwegian Institute of Technology, Division of Inorganic Chemistry, N-7034 Trondheim-NTH, Norway and ^b The University of Trondheim, Department of Chemistry, NLHT-Rosenborg, N-7000 Trondheim, Norway

Both ideal ¹⁻⁴ and regular solution models ⁵ have been adapted to explain the thermodynamic data of the alkali fluoride-aluminium fluoride melts. In the sodium system Grjotheim ¹ found that the dissociation reaction

$$AlF_6^{3-} \rightleftharpoons AlF_4^{-} + 2F^{-} \tag{1}$$

gave the best description of the cryolite peak in the phase diagram of NaF and AlF₃. The same result was found for the corresponding lithium system. 2,3 Holm 4 interpreted the total value of $\Delta H_{\rm mix}$ in the system NaF-AlF₃ as due to the dissociation of the cryolite anion into AlF₃ and F⁻ in the composition range $0 < X_{\rm AlF_3} < 0.25$. Dewing 5 found that NaF-NaAlF₄ mixtures may be described for all values of $X_{\rm AlF_3}$ as a regular solution the two ions F⁻ and AlF₄. Deviations near the NaAlF₄ composition were explained by the formation of Al₂F₇.

All these calculations, however, are based on model assumptions and are as such only indirect indications of melt species. In a previous investigation we reported the ion AlF₆³⁻ as the main complex in the system LiF-Li₃AlF₆. In order to test the existence of other species proposed in the cryolite melts, compositions in the system Li₂AlF₆-AlF₃ should be investigated. In this paper we report the results of a Raman spectroscopic investigation of the Li₂AlF₆-AlF₃ eutectic melt. After completion of the present work we became aware of a Raman investigation of the sodium system.^{7,8}

Results. The experiments were performed according to a procedure previously described. The only change in the experimental design was the introduction of a cylindric platinum liner in the Raman cell in order to increase the Raman intensity. The spectrum obtained at 730 °C for the molten Li₃AlF₆-AlF₃ eutectic mixture, LiF + 35.5 mol % AlF₃, so is presented in Fig. 1. Two peaks at 545±10 and 620±10 cm⁻¹ were found by subtraction of the background and by resolution of the band complex into two approximate Gaussian curves. The

Fig. 1. The Raman spectra of the molten Li_3AlF_6 —AlF₃ (I) and LiF-Li₃AlF₆ (II) eutectic mixtures at 730 °C. The band widths were 20 cm⁻¹ (curve I) and 25 cm⁻¹ (curve II). Sensitivity: 1000 cps. Scan speed: 0.2 cm⁻¹/s. Period: 50 s.

band positions were determined from six spectra. There were signs of additional bands at ~ 220 and ~ 350 cm⁻¹. For comparison, the spectrum of the LiF-Li₃AlF₆ eutectic mixture ⁶ also is given in Fig. 1. The ratio of the peak intensities I_{545}/I_{620} was calculated from the average of four spectra to be 1.0 ± 0.1 . Uncertainties in melt compositions are included in this limit

Discussion. The 620 cm⁻¹ band is assigned to the ν_1 frequency of the AlF₄⁻ tetrahedron. The frequency agrees well with 630 ± 20 cm⁻¹ estimated in our previous publication.⁶ The band at 545 ± 10 cm⁻¹ is attributed to the totally symmetric stretching frequency of AlF₆³⁻. This result is within the uncertainty limits of our first value, 556 ± 5 cm⁻¹. In NaF-AlF₃ mixtures, 7,8 the corresponding frequencies were found to be 622 and 555 cm⁻¹.

Since no definite sign of species other than AlF₆³⁻ and AlF₄⁻ was found, the dissociation (1) is used in a description of the melt mixtures in the composition range LiF-LiAlF₄. Thus the melt is considered as being composed of a cation mixture and a mixture of the anionic entities AlF₆³⁻, AlF₄⁻ and F⁻. This represents a Temkin model, but not necessarily an ideal one.

^{*} To whom correspondence should be addressed.

The following expression then is valid for the stoichiometric dissociation constant K of reaction (1) in the system LiF-AlF₃:

$$K = \frac{[(1+P) - X_{\text{Alfs}}^{\circ} (2+4P)]^{2}}{P[(1+P) - X_{\text{Alfs}}^{\circ} (1+3P)]^{2}}$$
 (2)

where P is the ratio between the concentrations of $\mathrm{AlF_4}^{3-}$ and $\mathrm{AlF_4}^{-}$. The equation is derived by a procedure similar to that described for KCl-AlCl₃ melts. 10,11 For pure cryolite, Li₃AlF₆, P is related to the dissociation degree α_0 of AlF 3- through

$$P = \frac{X_{\text{Alf}_6}^{-1}}{X_{\text{Alf}_6}^{-1}} = \frac{1 - \alpha_0}{\alpha_0}$$
 (3)

Combination of eqns (2) and (3) and introduction of $X_{{\rm AlF_4}}{}^{\circ}=1/4$ yield

$$K = 4\alpha_0^3/(1+2\alpha_0)^2(1-\alpha_0) \tag{4}$$

At a constant temperature, the relationship between P, α_0 and $X_{\rm AlF_s}$ ° is given by eqns. (2) and (4) provided the activity coefficient term is constant. This assumption is not as rigid as the ideal mixture approximation. The value α_0 at a temperature T may be used as a frame of reference for the function $P = P(X_{AlF_2})$.

According to Wolkenstein's bond polarizability theory, the mean molecular polarizability derivative is a bond property (see Chantry 12). It follows that the mol fraction ratio may be calculated from 10-12

$$\frac{X_{\text{AlF}\bullet^{3}}}{X_{\text{AlF}\bullet^{-}}} = k \frac{I_{\text{AlF}\bullet^{3}}}{I_{\text{AlF}\bullet^{-}}} = P \tag{5}$$

with k=1/1.9. The value k=4/6 was used by Solomons et al.,13 but they did not take the difference in v_1 frequencies between the two species into account. The Al-F bonds in the two species are assumed similar. Gilbert et al.8 found that the coefficient k should be between 1/2.0 and 1/2.1 in the NaF-AlF₃ system. By using the value k=1/2.0 and inserting 1.0 for the intensity ratio $I_{\text{AIF},^3}$ -/ $I_{\text{AIF},^4}$ at $X_{\text{AIF},^5}$ = 0.355, the result P=0.5 is obtained. This gives $K=3.4\times10^{-2}$ from eqn. (2) and $\alpha_0=0.24$ from eqn. (4) at 730 °C. This result is consistent with previous investigations of the LiF-Li₈AlF₆ eutectic mixture ^{6,8} which gave no sign of AlF₄. By taking into consideration the uncertainty of the observed intensity ratio, the uncertainty of α_0 is calculated to be ± 0.06 . It is a linear relationship between α_0 and P at $X_{\rm AIF}$, =0.355 and therefore the upper and lower limits are equal.

The effect of changing the temperature from 730 °C to the melting temperature of lithium cryolite, 782 °C, 2 may be estimated by using the value $\Delta H = 50.3$ J/mol at 700 °C which Holm and Holm have calculated for the dissociation AlF₆³⁻=AlF₃+3F⁻. Van't Hoff's equation then leads to an increase in α_0 of about

10 % when the undercooled liquid is heated to the melting point.

The obtained value of α_0 is in reasonable agreement with the thermodynamic values $\alpha_0 = 0.35$ and $\alpha_0 = 0.40$ reported by Malinovsky and Vrebenska ^{2,14} and with $\alpha_0 = 0.20$ given by Jenssen.³ The thermodynamic values refer to 782 °C. Good correspondence with thermodynamic results also are found in the recent Raman investigations by Gilbert et al.7,8 of NaF-AlF₃ melts. They found $K = 3 \times 10^{-3}$ at

To conclude, the dissociation of AlF₈³⁻ in cryolite melts is found to follow the equilibrium reaction AlF₆³⁻ \rightleftharpoons AlF₄⁻+2F⁻ with $K=3\times10^{-2}$ and $\alpha=0.24\pm0.06$ at 730 °C in the lithium system. These values are based on a Temkin melt model and a scattering efficiency (v_1) of AlF₆³⁻ two times greater than of AlF₄⁻.

Acknowledgement. The authors wish to thank Dr. K. Larsson for the use of a Cary 82 Raman spectrometer. The financial support of Elkem-Spigerverket A/S, Royal Norwegian Council for Scientific and Industrial Research, and the Norwegian Research Council for Science and the Humanities is gratefully acknowledged.

- 1. Grjotheim, K. Kgl. Nor. Vidensk. Selsk. Skr. (1956) No. 5.
- 2. Malinovsky, M. and Vrebenska, J. Collect. Czech. Chem. Commun. 36 (1971) 567.
- Jenssen, B. Fase- og strukturforhold for noen komplekse alkali- aluminiumfluorider, Lic. techn. thesis, Institutt for uorganisk kjemi, Norges Tekniske Høgskole, Universitetet i Trondheim, Trondheim 1969.
- Holm, J. L. Inorg. Chem. 12 (1973) 2062.
 Dewing, E. Met. Trans. 3 (1972) 495.
- 6. Ratkje, S. K. and Rytter, E. J. Phys. Chem. 78 (1974) 1499.
- 7. Gilbert, B., Mamantov, G. and Begun, G. M. Inorg. Nucl. Chem. Lett. 10 (1974) 1123.
- 8. Gilbert, B., Mamantov, G. and Begun, G. M. J. Chem. Phys. In press.
- 9. Holm, J. L. and Holm, B. J. Thermochim. Acta 6 (1973) 375.
- Øye, H. A., Rytter, E., Klæboe, P. and Cyvin, S. J. Acta Chem. Scand. 25 (1971) 559.
- 11. Rytter, E. Aluminium, Gallium and Indium Halide Complexes, Lic. techn. thesis 26, Institutt for uorganisk kjemi, Norges Tekniske Høgskole, Universitetet i Trondheim, Trondheim 1974.
- 12. Chantry, G. In Anderson, A., Ed., The Raman Effect, Dekker, New York 1973.
- 13. Solomons, C., Clarke, J. H. R. and Bockris, J. O'M. J. Chem. Phys. 49 (1968) 445.
- Vrebenska, J. and Malinovsky, M. Collect. Czech. Chem. Commun. 38 (1973) 659.

Received May 27, 1975.