tetramethylbenzocycloheptene, a conclusion
based on new peaks arising in the methyl
region by lowering the temperature. Our
cycloheptene derivative has the gem-dimethyl
groups in the same positions and new peaks
arise in the low temperature spectra in lower
part of the methyl region. This may be due to
a second conformer but could also be explained
by overlapping caused by the chemical shifts
and the coupling of the methylenes in positions
4 and 5, which in the low temperature spectrum
is extended over a region of at least 60 Hz.
The fact that the infrared spectra show only
one conformer in solution makes the last
explanation the most probable and our as-
sumption is that only one conformer is present.

From models it can be seen that the ener-
getically possible forms of 2-carboxy-3,3,6,6-
tetramethylcycloheptene are the two inverted
chair forms and the two boat forms, however,
only one of the two inverted twist boat forms.
In the other the methyl-methyl interaction is
too severe.

According to Favini et al.? the dihedral angle,
w,, is the same in the chair and the boat forms
of cycloheptene and= —72.2°. The n-contribu-
tion to the geminal coupling constant of the
7-protons in these two conformations should
then be almost zero.® Our observed value
Jgem=14 Hz is as expected for this size ring,
(cyclohexane = 13 Hz) and the same as the value
found for the 7-protons in benzo-cyclo-
heptene=14.1 Hz,* which is found to take the
chair conformation. The conclusion that may
be drawn from the =-contribution to the cou-
pling constant of the 7-protons is therefore that
our cycloheptene derivative takes either the
chair or the boat conformation.

The observed vicinal coupling constant J,, =7
Hz is likewise in accordance with the dihedral
angles of the chair and boat conformations and
the corresponding theoretical values for allylic
proton-proton coupling.®

The result of the analysis of the low-tem-
perature NMR-spectra of 2-carboxy-3,3,6,6-
tetramethylcycloheptene is therefore that the
conformation is either the chair or the boat.

The inversion barrier in cycloheptene itself
is calculated from NMR-data ! at —160° to
be 5.0 keal/mol. The gem-dimethyl groups make
it more difficult to find low-energy intercon-
version paths between the different forms, and
this explains the considerably higher coalescence
temperature, —40°C, and the corresponding
higher barrier, 12.2 kecal/mol, in 2-carboxy-
3,3,6,6-tetramethylcycloheptene.

The NMR-spectra were recorded with a
Varian HA 100 15 D instrument. For the calori-
metric measurements a Perkin-Elmer Differen-
tial Scanning Calorimeter IB was used.
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Isomerization of z-Carotene to
B-Carotene and of Lutein to Zeaxanthin
A. G. ANDREWES

Organic Chemistry Laboratories, Norwegian
Institute of Technology, University of Trondheim,
N-7034 Trondheim-NTH, Norway

More than 25 years ago Karrer and Jucker!?!
reported the base catalyzed isomerization of
a-carotene (I, pB,e-carotene by new nomen-
clature,?stereochemistry subsequently assigned?)
by prolonged treatment with NaOEt/EtOH
in benzene at elevated temperature. Extensive
decolorization of the carotene occurred and
from 30 mg of «-carotene (I) a small amount
of p-carotene (2, B,B-carotene?) was isolated.
The same authors reported the sodium ethoxide
catalyzed isomerization of lutein (3, B,e-
carotene-3,3’-diol 2) to zeaxanthin (4, §B,p-
carotene-3,3’-diol,> Scheme 1). More recently,
Kargl and Quackenbush ¢ reported the iso-
merization of J-carotene (5, ep-carotene,?
stereochemistry later assigned ®) to y-carotene
(6, B.y-carotene ?) by the procedure described
by Karrer and Jucker.?
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Attempts to utilize this procedure for the
small scale (0.2—-1.0 mg) isomerization of a-
carotene (I) to B-carotene (2) or e-carotene (7,
&, e-carotene 2) to a-carotene (I) and f-carotene
(2) failed. Buchecker et al.® reported similar
difficulties during attempts to isomerize lutein
(3) to zeaxanthin (4). A modified base catalyzed
isomerization was developed to allow small
scale conversions of a-type (¢ by new nomen-
clature 2) end groups to g-type end groups.

Treatment of synthetic, racemic e-carotene
(7, 0.125 mg) with KOH/MeOH (20 9, 0.5
ml), benzene (0.5 ml) and anhydrous dimethyl
sulfoxide (DMSO, 2 ml) in a sealed tube under
an atmosphere of nitrogen at 118°C for 15— 30
min gave, after the usual extractive isolation
and chromatography, «-carotene (I, racemic,
16 — 28 9,) and B-carotene (2, 16 —21 9,). Total
pigment recovery including unreacted e-caro-
tene (7) was 51—68 9%. The composition and
total pigment recovery depended on reaction
time. Shorter reaction times yielded higher
pigment recovery, higher conversion to «-
carotene (I) and lower conversion to g-carotene
(2). Increased reaction times resulted in higher
conversion to p-carotene but lower total
pigment recovery. When NaOEt, KOEt, or
t-BuOK were used as base the carotene was
completely degraded in 10 min.

Attempted isomerization of lutein (3) to
zeaxanthin (4) using the above optimum
conditions failed. However, when a solution of
lutein (3, 1.0 mg), KOMe/MeOH. (5 %, 0.5 ml)
and DMSO (2 ml) in a sealed tube under N,
was heated at 118°C for 20 min, zeaxanthin was
formed in 10-15 9, yield. Stereochemical
aspects of this reaction are treated separately.’

Instruments used were those commonly
employed in this laboratory.® Identity of all
products of the isomerization study was
established by electronic absorption spectros-

copy, mass spectrometry and chromatography
including co-chromatography with authentic
specimens. «-Carotene (I), p-carotene (2),
and e-carotene (3) were separated on Al,O4
plates developed with petroleum ether, ethyl
ether (95+5). Lutein (3) and zeaxanthin (4)
were separated on plates prepared from MgO,
Ca(OH),, kieselgel G, CaSO, and H,0 (9+ 12+
30+ 3+ 93) activated for 1 h at 100°C; developed
with acetone-petroleum ether-isopropanol (20 +
77+3).
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