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A theory of surface nucleation has been developed for the thermal
decomposition of solids. The nuclei were presumed to be randomly
distributed on a certain number of lines, which again were randomly
distributed over the surface of prismatic crystals. Hereby, were ex-
plained the non-integral and varying values for the apparent reaction
order, which occurs in Erofeyev’s equation. Thus, the decomposition
of cobalt(II) carbonate could be described satisfactorily by a model of
instantaneous nucleation of only a single pair of (opposite) crystal
faces, while the decomposition of nickel oxalate, which is accompanied
by a considerable induction period, first at the later stages followed
the same kinetics as for the cobalt(II) carbonate.

Though dehydration of salt hydrates or calcination of carbonates may seem
to be simple processes, the kinetics for those and other thermal decomposi-
tions have been shown to be far from simple. Depending on the experimental
conditions (e.g. atmosphere, vapour pressure, and prehistory of the solid) the
recorded reaction curve (degree of reaction versus time) may or may not exhibit
a sigmoid shape. In the latter case the initial straight line and the succeeding
decay period have been explained by the growth of a uniform product layer
from the outside of the particles leaving a kernel of unreacted material. Con-
sequently, the kinetics could be derived from the outer geometry of the par-
ticles as has been done for spheres 1 and parallelepipeds,? though it was found
later that the size distribution of the particles should also be taken into con-
sideration.®-5 In case of a sigmoid curve the acceleratory period has been
explained by the activation and growth of a limited number of growth nuclei
located either on the surface 87 or in the volume.!®-1? The decay period can
also be described in many cases — if not in all by reversible reactions — by
the topochemical kinetics mentioned above.'=® Thus surface nucleation tends
to be favoured. However, the expressions derived by Mampel,” extended by
Delmon,? and reviewed by Young ? have not been much used, probably be-
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3930 ARNE ENGBERG

cause of their rather complicated nature. So far they have been overshadowed
by the theories based on volume nucleation, including those of Avrami,10-11
Erofeyev,'? Prout-Tompkins,® and the versions of Garner’s theory of linear
branching chains.!4-17 While the Avrami-Erofeyev equation may be expected
to describe satisfactorily such physical processes as recrystallizations and
phase transitions, the assumption of volume nucleation appears unrealistic
for chemical processes where gases are involved. Due to larger lattice vibra-
tions caused by the partial potential, the probability of a chemical dissocia-
tion and, hence, of a nucleation should be larger at the surface. This may be
the reason why deviations have been observed even in the allotropic trans-
formation of tin ! for the ultimate part of the reaction curve.
In the Avrami-Erofeyev equation, which reads

o =1—ek" )

the exponent, m=mn+1, is assumed to be the sum of the dimensionality, =,
and the number of nucleation steps, ¢. Thus, an integral number should be
expected for the slope, m, when In[—In (1 —«)] is plotted against In (£). In
practice, however, broken or extremely low or high values may be found
together with deviations from the straight line in the decay period. From the
literature the initial and final values of m for following decompositions can
be extracted: 2.5—3.1, 2.9—5.1 (KMnO,),*® 5.0, 3.2 (NiC,0,), *0.7—-1.9,
0.7—1.0 (MgC,0,),** and 1.48, 1.67 (CoCO,).22

In the following it will be shown how m may be rationalized into meaningful
values by allowance of a certain induction period, £, (the observed times,
t.s being reduced by fy; that is, t=t,,—1) and how the decay period can
be explained by surface nucleation.

While Avrami!® supposed nucleation to be a first order process (to
be derived, if all germs are nucleated with the same probability), Mampel 7
considered the extreme case of a constant nucleation rate. Here, the other
extre me case, that of instantaneous nucleation, will be considered. The latter
case not only leads to especially simple equations, but is presumed to represent
the d ecomyposition of solids in a dynamic vacuum more realistically than does
a const ant nucleation rate. ‘

Instead of a random nucleation, as supposed by Avrami, Mampel, and
Delmon, a distribution of the germs on certain lines will be assumed in har-
mony with the inference given by Young ? for the decomposition of nickel
oxalate and the observations made on calcite 2¢ and nickel sulphate hexa-
hydrate.25

The basis of the growth nuclei on the surface has formerly been considered
as circular in harmony with the observations on tin 1® and chrome alum 26
(with the nuclei growing inwards as hemispheres). However, a square basis
will be assumed here in harmony with that observed on nickel sulphate hexa-
hydrate.?s In order to further facilitate the calculations the growth nuclei will
be considered as hemicubes instead of the hemioctahedra that are observed.2®

Acta Chem. Scand. 27 (1973) No. 10



SURFACE NUCLEATION 3931

THE SURFACE REACTION

Consider a rectangular planar surface with sides b and ¢ and containing a
number of lines, /,, running parallel to ¢, but randomly distributed over the
surface. Furthermore let the basis of the growth nuclei be squares of sides
2k t, orientated parallel to b and ¢, and with their centers located on the lines
so that each line contains mg, randomly distributed centers (see Fig. 1).
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Fig. 1. Model for coverage of a crystal surface with growth nuclei. The centers of the
growth nuclei (+ ) are located on two lines (- - -) running parallel to the side c.

Now, according to Mampel,? the probability that a given point on a growth
line has been covered by ¢ overlapping growth nuclei originating from the
same line should be given by the Poisson formula

Puli) = (W'fil)e# = [(2k tmgfc)[il]e~ @rgimje 2)

where the average, p, for the present case will equal the total length of the
nuclei, 2ktm,, divided by the length of the line, c. The probability that a
point on the surface has been covered by j overlapping growth lines is ex-
pressed in a similar way by

Pi(J) = [(2k,tl[b)[j1]e~ Brgh/) 3)
Acta Chem. Scand. 27 (1973) No. 10



3932 ARNE ENGBERG
It will appear from Fig. 1 that the total area of the uncovered surface
can be estimated by the sum of the areas for the rectangles of breadths p,(5)b

and hereto corresponding lengths [p,(0))c. Thus, the degree of covered
surface, 6, should amount to

00 = 1= Sp(paO)Y (4

which on insertion of (2) and (3) gives

b (2kyflyB) @R ~ihgmg

o0@t)=1-> - 5

6 =1-3 =% ()
By introduction of a reduced time, u,

u = 2k tla (6)

where a is the thickness of the crystal (normal to the surface under considera-
tion), and the reduced number of germs, M, and lines, L,

M = mgalc (7)
L = lyalb (8)
eqn. (5) simplifies to
o) = 1 i (L:,'L)i . —Lu . —iMu ®
i=o J:

The upper summation limit should not have been changed into L (unless
lo=L for a=>5) but the error thus produced will be of minor importance.

For description of the acceleratory phase of the reaction the exponential
terms in (9) can be expanded in a power series, yielding

0(u) = LMu[1 — 3 Mu—3M(L—3M)?® + I M*(L—1;M)u + -] (9a)

Thus, 6(u) tends to approach LMu? at the very beginning, which is to be
expected, when LM =N represents the reduced number of growth nuclei in
total and %2 stands for the reduced area for a single growth nucleus.

If Mu is very small compared to unity, then eqn. (9) reduces to

O(u) =1—e M = ] _e-Nu* (9b)

to be expected for a completely random distribution of the germs. If on the
other hand Mw is very large compared to unity, then eqn. (9) reduces to
O(u) =1—e-I# (9¢c)

to be expected for the growth from randomly distributed lines. Thus, the ratio
M|L will be determining for the tendency of the germs to array themselves on
a line.
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SURFACE NUCLEATION 3933

THE VOLUME REACTION

Consider a rectangular parallelepiped as shown in Fig. 2, where the faces
normal to the sides a, b, and ¢ have reacted to the respective degrees of surface
coverage, 0,, 0,, and 0, Provided that nucleation is instantaneous and that
the growth nuclei are hemicubes (or just cylindrical with the axis normal to
the surface), the degree of coverage for a plane parallel to the surface and at a
certain distance below it will be independent of the depth when this is smaller
than k. t. Otherwise the degree of coverage will be zero. Hereby, the evalua-

Fig. 2. Penetration of the growth layers

from the various faces of the model crystal

shown by dotted lines. Ingestion of the

growth layers from either two or three

faces are shown by the hatched areas, re-
spectively.

tion of the reacted volume has been greatly simplified. It will appear from
Fig. 2 that there are three growth domains in the model crystal: I with growth
from a single face, and II and III with interfering growth from two and three
faces, respectively. For the first domain the reacted volume, v, is found as a
sum of the areas, e.g. (b—2kt)(c—2k,t), multiplied by their respective de-
grees of coverage, 0,, and the 5epth kg,

v, = 2kgt§(b — 2k )(c— 2k )0, (10)

When the overlapping growth nuclei originate from more than one face, the
resultant probability for an uncovered surface element should be the product
of the individual probabilities for uncovering for the faces in question. Hence,
for that part of domain II, where growth layers normal to @ and b are over-
lapping, the total degree of covering, 6,,, becomes

0p=1—(1-06,)(1-6,) (11)
In a similar way the degree of coverage, 0,,, is obtained for domain III,
Oy = 1= (1—-0,)(1—6,)(1-0,) (12)
Consequently, the reacted volumes of domains IT and III become
vy = 4(kgt)*> (@ — 2k )[1 - (1-6,)(1-6,)] (13)
rgy = 8(kgt)*[1 = (1—6,)(1—6,)(1—6,)] (14)
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3934 ARNE ENGBERG

By introduction of (6) and the elongations I, and ,,
ly="b/a;l, =cla (15)
the degree of reacted volume, «, can be expressed by

x = ('vx + vy + vn[)/abc = (ea + eb/ll + oc/lz)u_ (ebec/lllz + eaoc/lz +
Gaeb/ll)uz + (eaebec/lIZZ)ua (16)

where 6,, 0,, and 0, depend on u according to (9).

The universality of the expression given above will be shown in the fol-
lowing by the extremes that can be derived from it. The first one to be con-
sidered is that derived when the ratios 0,/I, and 6, /l, are either vanishing or
identical with 6, (=0),

a(u) = 1— (1 — Gu)* (m=1,2 or3) (16a)

which further simplifies for 6§ =1 to the well known expression for a n-dimen-
sional phase boundary reaction. Thus, a low dimensionality of a reaction can
be produced either by a preferential nucleation of some of the faces (6, or
0, vanishing) or by a preferential growth of the dimensions (I, or I, large).

At this stage it must be emphasized that (16) should apply equally well
for anisotropic reactions, provided that the geometric elongations defined in
(15) have been replaced by the corresponding kinetic quantities

by = (ky/k,)(bla); 1y = (k[k.)(c[a) (152)

obtained by multiplication of the geometric elongations by the proper ratios
of the anisotropic rate constants k,, k,, and k, (for reactions along a, b, and
¢, respectively).

The second extreme to be mentioned is that occurring when the faces
have been covered totally by the growth nuclei. By a reasonable large number
of germs this may be realized even in an early stage of the process, where-
after the general topochemical expression ® should be followed,

L+l 1+ L+, 1
o(u) = A u i u?® + ll—lzu (16b)

At the end of the reaction, when 2k, has grown larger than one of the
dimensions corresponding to « larger than unity (when a is smallest dimen-
sion), at least one pair of the growth layers which originate from opposite
faces, would have grown into each others. As the phenomenon has not been
considered by the derivations, (16) should apply strictly for the previous
period only (u less than unity). In practice, however, the equation may re-
produce also the following period satisfactorily, especially for an apparent
three-dimensional reaction. Thus, the transition (u=1) should occur at a
degree of reaction of at least a,,,,=1—€3=0.95 (corresponding to ML=1)
and usually at much higher values (e.g. .= 0.9998 for ML =3).

Greatest deviations should be expected for an apparent unidimensional
reaction, where the transition may occur at a degree of reaction as low as
0.63. Therefore, the correct treatment shall be given for this type of reaction.
Putting 6,/I, and 6,/l, equal to zero in (16) or n equal to unity in (16a) results
in the description of the first period (v <1; kt <a/2),
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SURFACE NUCLEATION 3935

a(u) = Ou = I: 2 / "L“e_’M“]u (17a)

In the following period (1 <u < 2) the two growth layers have grown into each
other within a layer of reduced thickness #—1 in the middle of the particle.
Then, according to (11), the degree of covering within the overlap layer should
amount to 20— 62, provided that the surface coverages, 6, are identical for
the two nucleation faces in question. As 2 —u will represent the thickness of
the other layers (the bread of the sandwich), the degree of reacted volume
should be given by

a(u) = 0(2—u) + (20 — 62)(u—1) = Gu—0%(u—1) (17b)

When the growth layers have reached the opposite faces (2 <), no further
growth in thickness is possible, the growth being limited to the two other
dimensions for completion of the reaction. The ultimate period is thus de-
scribed by

a(u) = 26 — 62 (17¢)
By introduction of a cutting-off function F(z), defined as
0(x<0)
Fx)=3{x(0<a<l) (18)
l (<2

the kinetics for the three periods given above can be combined into the fol-
lowing expression,

a(u) = 20 F(u/2)— 62 Fu—1)
13, G -

L j .
[1— 5 L) e_L“e_’M“:IzF(u—-l) (19)

i=o J!

REACTION OF HETEROSIZED PARTICLES

Besides overlap and ingestion of the growth nuclei described above the
decay period of the reaction curve may be influenced by the diffusion of
gaseous products and, when particulate samples are used, by the particle
size distribution. As long as reactions of small particles in dynamic vacuum
are discussed, the diffusion may be of minor importance. Therefore, the dis-
cussion will concentrate on the effect from the particle size distribution.

Let the sample consist of crystals with a pair of invariant nucleation
faces, bc, and with the thickness, a, being distributed over a certain number
of classes, such that the ¢-th class contains a number, n;, of crystals of di-
mension a,. Instead of (19) it can then be shown that

= 20T (5200) g5 S (Tl e
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provided that the reduced time u is on basis of the mean dimension g,
. . a= 3 (ma;lZn;) (21)
to be inserted in (6).

The expression can be simplified somewhat by introduction of the nor-
malized frequencies, f;, and the reduced dimensions, g¢;,

Ji=mn/2mn; (22)
9 =ala (23)
whereby (20) reduces to
u u
() = 203fa P (52 ) ~#3fa ¥ (7 -1) (24)

RESULTS AND DISCUSSION

Some calculations have been made on a Wang model 700 desk computer
using a program written for the purpose and based on (9) and (20) (or (24)).
The program was designed to operate mainly with the number distributions
determined by microscopy of a relatively low number of particles. For this
reason and because of the low storage capacity of the computer (120 registers),
the particle size distribution was assumed to be present as a ten-class histo-
gram. In the calculations to be reported here approximations to the log-
normal weight distribution were used. This is the distribution which to a
greater extent was found obeyed for precipitates such as AgCl in photographic
emulsions,?” BaS0,,2® and CuS0,.5H,0.2 Consequently, the corresponding
number distribution should be given by

f; = (constant) g,a® exp [ — (In ¢;— In g, 4.)%/20%] (25)
with the constant =exp [ — 202]/[0(27)}]

Table 1. Approximated number distributions for log-normal weight distributions with
the frequency given in percentage.

2/4mode
] 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.3 1.5 1.7 1/9mode

0.54 9.03 56.70 32.30 1.42 0.01 0.84602
0.04 0.89 5.39 14.17 21.24 32.70 19.52 5.01 0.89 0.15 0.8961
4.30 10.09 15.85 17.80 16.00 18.49 11.22 4.19 1.40 0.66 0.7919

oo
QO DO -

4/mode
o 0.2 03 04 05 07 09 11 15 1.9 25 1/gmode

0.2 0.04 3.38 29.64 40.37 24.37 2.15 0.05 0.8891
0.3 0.02 0.53 4.90 19.66 33.74 23.40 14.58 2.84 0.31 0.02 0.7757
0.4 1.72 6.96 13.25 28.56 25.07 13.30 8.41 2.22 0.45 0.06 0.6546
0.5 10.82 17.28 17.96 24.32 15.69 7.30 4.74 142 0.39 0.08 0.5253
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SURFACE NUCLEATION 3937

For the precipitates mentioned above o was observed in the range of
0.2—0.5. In Table 1 the histograms are given which have been used to re-
produce (25). It will appear that two sets of class interval have been chosen
in order to obtain reasonable approximations over the whole range of the
dispersion.

The results in Fig. 3 are shown for the case in which the reaction is under

. the influence of“particle size distribution alone (M =L = c0). Apart from the
mean size, whose influence has been eliminated by introduction of the reduced
time u, the further influence — namely that from the dispersion — is seen
to result in a retardation of the later stages of the reaction. In fact, for all
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Fig. 3. Reaction curves for an apparent Fig. 4. Reaction curves for an apparent
unidimensional reaction in the topo- unidimensional reaction for particles with
chemical limit (6 = 1) for particles with ap- an approximated log-normal weight distri-
proximated log-normal weight distribu- bution (¢=0.3) and with solid (M =)
tions (Table 1). growth lines of following numbers: L =0,
20, 10, 5, 3, 2, 1 (for the curves from top

to bottom).

relevant magnitudes of the dispersion only the upper halfs of the reaction
curves will be affected by the particle size distribution, which is in agreement
with earlier findings.> Although the curves may appear somewhat edged be-
cause of the coarseness in the histograms used, the duplicates (for ¢=0.2 and
0.3) run close together, which indicate that the deviations from the master
curves (those for the true log-normal distribution) are relatively small.
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3938 ARNE ENGBERG

When the reaction initiates from a limited number of growth lines, a
more or less pronounced acceleratory period is found even if an infinite number
of growth nuclei are present as shown in Fig. 4. The reaction curves begin as
parabolas which can be realized by the approximation of (17a),

a(u) =[l—e~Iu + ... = Lu? + --- (26)

but because of the growth overlap they soon approach the corresponding
topochemical curve (cf. Fig. 3) until practical coincidence, the occurrence of
which is determined by L. For many lines (L > 20) the coincidence occurs
already in the first stages of the reaction (x <0.2), while few lines (L < 4) can
remove the coincidence. It must also be emphasized that the infinite number
of lines assumed in topochemical kinetics, in practice is satisfied, when L is in
the order of 100. When L is larger than 10, the coincidence will occur within
the first half of the reaction, which means that the two phenomena, growth
from nucleation lines and particle size distribution, can be discussed inde-
pendently of each other. All of the curves are remarka,bly close to straight
lines when 0.2 <« <0.6 but their slopes deviate somewhat from that of the
interfacial reaction (L = co) within the limits of 10 9, above (L =10) and 20 9%,
below (L=1). Consequently, the rapid estimate of k,/a obtained from the
slope may be inaccurate, while a more reliable estimate must be gained from
the ultimate part of the reaction where the influence from the growth lines
has been reduced to a minimum.

According to (26) an estimate of L may be obtained from the initial slope
of [x(u)]}, but an examination of Fig. 5 reveals that the predicted straight line
is followed over a very narrow range (0 <o« < 0.006) when M is large. When M
is small, however, d[«(u)]}/du is constant over a considerably larger part of

0.7

1 | T T /I I
Vo ’
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0.6 ’
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0.5 / -
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Fig. 5. The acceleratory period («} versus
01~ 7|1 wu) for one of the reaction curves in Fig. 4
(L=2, M=) together with curves for a
L | ; A | \ u decreasing number of nuclei, M =00, 10, 5,
0.0 o1 02 03 ot o5 s oz 32 1 (for the curves from top to bottom).

Acta Chem. Scand. 27 (1973) No. 10



SURFACE NUCLEATION 3939

the curves, but the slope is somewhat dependent on M: 1.414 (M = o0), 1.377
(M =10), 1.249 (M =5), 1.160 (M =3), 1.096 (M =2), 1.000 (M =1).

When the reaction curves are transformed into Erofeyev plots, nearly
straight lines are produced and in such a way that each curve may be ap-
proximated by two lines bisecting each other at about 0.4. In Fig. 6 such
curves have been drawn for the same material as presented in Fig. 4. The
apparent reaction order given by the slope is dependent on L, but the varia-
tions are largely concentrated to the lower half of the reaction as can be
realized from the following figures: 1.06, 1.63(L = o0); 1.32, 1.63(L = 20); 1.57,
1.63(L=10); 1.68, 1.74(L=5); 1.84, 1.91(L=3); 1.96, 2.00(L=2); 1.94, 1.89
(L=1). The first of these figures are valid for the region 0.05<a < 0.2 while

004 006 01 0% 02 0304 060810 14 20 °

T T T T T T T T T77]093

log{-log(1-a))

0.20

0.10
0.08
0.06

-14 -12 -10 -08 -06 -04 -02 00 02 logu

Fig. 6. Erofeyev plot (log[ —log(1l —«)] versus log u) for the same reaction curves as in
Fig. 4.

the second ones are valid for the region 0.5 <« < 0.9. This is just in accordance
with the theory since the first reaction order should be affected by the number
and distribution of the growth nuclei and thus vary between the topochemical
limit (1) and the limit of a two dimensional growth of nuclei (2), while the
final reaction order should be determined by the topochemical properties of
the sample material.

Although the above discussion has been limited to the apparent unidimen-
sional reactions, it is also true that for other types of reactions a non-integral
or varying reaction order may in general be explained by a surface nucleation.

Finally, some experimental results will be taken from the literature and
related to the theory. For the thermal decomposition of commercial cobalt(II)
carbonate Avramov and Janatchkova 22 found the Erofeyev equation to be
obeyed with reaction orders ranging from 1.37 (at 220°C) to 2.54 (at 270°C) in
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dependence of temperature. The kinetics could have been described better
by the Erofeyev equation if an induction period had been included. Thus,
for the lowest temperature the initial reaction order (taken for the region
0.05 <& <0.20) could be moved from 1.48 (f,=0) to 1.67 (f,=>5) and 2.00 (t,=
10 min), whereas the final reaction order of 1.67 (for the region 0.5 <« <0.9)
is scarcely changed. By the first movement the reaction is described by a con-
stant reaction order, and by the second movement the initial reaction order
assumes a meaningful value. The discrepancy between the slopes reported
here (1.48) and those reported earlier (1.37) originates from the fact that
Avramov and Janatchkova did not normalize « to unity for the maximum
degree of reaction as done here. Their values for « were based on the reaction
scheme

CoCO; + 30, - 1C0,0, + CO, (27)

Their final values amounting to 75— 77 9, indicate, however, that the
sample material after drying at 130°C must have been a basic carbonate
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Fig. 7. The inverse reaction curve (u(x) Fig. 8. Reduced reaction curves for the
versus t) for the decomposition of cobalt(II)  thermal decomposition of cobalt(II) car-
carbonate at 220°C. bonate at 220°C (O) and nickel oxalate at
240°C (A). u=2kgy(tons —t,)/a with t,=0 for
cobalt(II) carbonate and t,=98 min for
nickel oxalate. The solid line represents
an unidimensional reaction of log-normal
weight distributed particles (o=0.3) with
L=5 and M=20.
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SURFACE NUCLEATION 3941

instead of the neutral one assumed. For instance, 2CoCO,.Co(OH),. H,O yields
a weight loss of 77.60 9, of the reaction scheme mentioned above.

In contrast to the theories of Avrami and Erofeyev the apparent two-
dimensional growth in the acceleratory period and a smaller dimensionality in
the later stages of the reaction can be explained easily by the present theory.
The magnitudes of L, M, and k=Fk,/a were estimated in the following way.
L was estimated by a comparison of the Erofeyev plot for the observed o with
the corresponding theoretical curves in Fig. 6. A translation of the observed
curve over the theoretical ones with respect to the time axis gave a practical
coincidence of the curves when L=5 (M = o0). A somewhat better fit was ob-
tained when o was corrected by an amount «;=0.02 so that « ., = (x—«,)/
(1 -og), the quantity «, being determined as the intercept of the smoothed
curve from a o,t? plot. A still better fit was also obtained when M was finite,
say M =20 (15<M <100). Furthermore the constant could have been ob-
tained from the comparison mentioned above, as the translation will amount
to log k. More accurately, however, k is found as the slope of the straight line
obtained, when u(x) has been plotted against ¢, as shown in Fig. 7. In the
present case the linear regression analysis yields k= (1.013 + 0.012) x 10-2 min—1
with a negligible induction period fy= —0.16 + 0.15 min, and a standard devia-
tion on ¢ of +0.68 min (corresponding to 0.3 mm on the published curve).
The goodness of the fit for the final results can also be realized from Fig. 8.
The above mentioned correction by «, may be justified if excess water is
present and given off rapidly. The observed increase of the reaction order for
increasing temperatures may be explained by a lower activation energy for the
nucleation than for the growth. Then growth will be more enhanced than
nucleation by an increase in temperature with a resulting decrease in number
of effective growth nuclei and, consequently (c¢f. Fig. 6), an increase of the
reaction order.

When the experimental curves for higher temperatures were treated as
above, N =LM was found to decrease gradually from about 100 (220°C) down
to 1 (270°C). The apparent activation enthalpy for k of 22.8 kcal/mol then
became much closer to the thermodynamic value of 21.8 kecal/mol for bond
breaking (removal of carbon dioxide without oxidation of the metal) than did
Avramov and Janatchkova’s value of 27.85 kcal/mol. If in addition the metal
is allowed to oxidize, the latter deviates even more from the thermodynamic
value, which amounts to only 9 kcal/mol.

Nearly the same kinetics as given above have been found for nickel oxalate,
although without a considerable induction period. So, the thermal decomposi-
tion of the oxalate can not occur by just a bond breaking as in case of the
carbonate but must pass through several steps before the ordinary growth
nuclei can be formed, namely: (1) charge transfer (of an electron) from the
surface anion to an anion vacant site, (2) dissociation of the anion radical into
gaseous carbon dioxide, (3) diffusion of the vacant anion sites into the body
of the crystal, and (4) migration of the trapped electrons to the cation sites
under production of free metal. This scheme was already mentioned by Allen
and Scaife 30 and later adopted by Jacobs and Kureishy 3 and others.23,52-34
As the rather large anion will possess a low mobility, the third step should
be the rate determining one until so many vacant sites are formed that the
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structure in the outer layer collapses under formation of metallic nuclei, after
which the nuclei are expected to grow at normal rate.

When the induction period was eliminated by subtraction of an appro-
priate value for ¢, (98 min), the resulting reduced data for the reaction (240°C)
in hydrogen 2° may be shown to fall on the same curve in Fig. 8 as that given
for the cobalt carbonate. Following the curve for L=25 and M =20 the data
indicate a pronounced tendency for the nuclei to align themselves on lines, a
result which has already been observed by electron microscopy.3 In the ac-
celeratory period the experimental data for nickel oxalate appear somewhat
high, however, which suggests that the growth nuclei first acquire their final
number at a later stage. A more satisfactory description could be obtained by
allowance of a certain ay (0.02). Together with a diminished induction period
(t,=65.8 min) this gave the best fit to (24) but not, however, without changes
of L (2) and M (2). Even the deviations were reduced but they were not
removed, indicating the aforementioned nucleation period.

CONCLUSION

From the kinetic model of surface nucleation followed by three-dimensional
growth it turns out that Erofeyev’s equation and the equation for the con-
tracting rectangle (or sphere, envelope and line) are two of the extremes from
a more general description. Thus, the apparent reaction order in Erofeyev’s
equation is affected by the number of nuclei and their possible alignment for
the acceleratory phase and to a lesser extent by the particle geometry and
size distribution for the decay period. Furthermore, if the number of nuclei
depend on temperature and Erofeyev’s method is used, the activation energy
will not correspond to the interfacial reaction, as exemplified by the reaction
of the cobalt carbonate. If only a few nuclei are present, several solutions for
the constants k, L, and M may apply to the experimental data (¢f. nickel
oxalate) whereby the magnitudes of the constants can only be assigned within
wide limits rather than with definite values. Then the correct solution must
be obtained from, e.g., microscopical examinations of the reaction. The aim
of the present work, however, has been concentrated on obtaining a family
of reasonable solutions to the observed kinetics, of which only one, of course,
will be correct.
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