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Fig. 1. The formation of HRP from apoHRP
and Lba (O), Lbc (@) and MbI (A) in 0.02 M
sodium phosphate buffer, pH 7.0. Ordinate:
HRP formed as calculated from the activity
measurements; abscissa: concentration of
hemoglobin in incubation solution.

peroxidatic activity of Lba, Lbe, Mb I, and
apoHRP. The activity obtained is there-
fore a consequence of the formation of
holoHRP.

Banerjee 1° has defined the equilibrium
constant for the dissociation of a hemo-
protein to yield dimeric hematin and
protein and derived the value log K =15.24
at 25°C for metmyoglobin at pH 7.0. A
comparison of the affinities of the apopro-
teins of Lba, Lbe, and Mb I allows a rela-
tive value of 12.81 for Lba and 12.91 for
Lbe to be estimated for the hematin-
protein association constant, assuming the
constant for Mb I to be equal to the above-
mentioned 15.24.

These findings present a new case of
hematin transfer between proteins. Under
the conditions studied (pH 7.0) heme is
about 370 times more firmly bound to the
apoprotein in horse Mb I than in Lba, and
250 times more firmly than in Lbe. A
comparative study on urea denaturation of
Lba, Lbe and sperm whale myoglobin in-
dicates that sperm whale myoglobin is
more stable to urea denaturation than the
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two leghemoglobin components.!* It ap-
pears therefore, as through the ‘heme
pocket’’ of Lba and Lbc is more open than
that of myoglobin, and allows an easier
migration of the heme.
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The Hammett equation (1) has empirically
been found to well describe aromatic
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reactivity data (m and p substitution) of
reaction series of type I (for recent reviews,

see Refs. 1 and 2):
O

kyy
O 7=
i
), )
Often, the Hammett equation is written
in the reduced form as

(1a)

However, as will be argued below, for
mathematical and statistical reasons, the
following, full formulation, should be pre-
ferred

log ki;j—log kio = gia;

log k,']- = a; + ;0 + € (1b)

In eqn. 1b, the parameters o; and g; are
specific for the <:th reaction (defined by
the reaction center Y; in scheme I). The
former («;) is closely, but not exactly, cor-
responding to log k;, in eqn. la. The
substituent parameter o; is specific for the
Jith substituent (X il scheme I). The
residuals (e;) denote the part of the ob-
served data (log k;;) which is not described
by the systematlc part in eqn. 1b. They
contain contributions of two, principally
different, types, namely (a) errors of
measurement and (b) model errors, due to
simplifications inherent in eqn. 1.*

Hine,® making a theoretical interpreta-
tion of the Hammett equation in terms of
free energy differences between reactant
and products (or transition states) in
scheme I in conjunction with a com-
plementary scheme describing the change
of the substituent X; to the substituent
W, arrived at the followmg formulation
of the Hammett equation, which is
formally symmetrical in the reaction and
substituent variable

log kij—log kiy = t;j(0vi—ozi)ax; (2)

Wepster ¢ recently extended this forma-
lism also to the extended Hammett equa-
tion of Yukawa and Tsuno,® obtaining the
following equation

log ki;—log ki, = tjl(ovi—0z;)ox; +
(avi®— 0280 x;F] (3)

* Eqn. 1 is empirically valid both for rate
(k) and equilibrium (K) constants. For brevity,
however, the notation is restricted to the
former.
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Though the derivations of Hine and
Wepster are formally correct, and con-
sequently also eqns. (2) and (3), these
formulations imply, incorrectly, a sym-
metry between the reaction variable(s)
and substituent variable(s) in the Hammett
and Yukawa-Tsuno equations. However,
in their full formulations (eqn. lb and
analogously for the Yukawa-Tsuno equa-
tion), these equations are not symmetrical.
In the Hammett equation, the variation
of the reaction center is described by two
parameters («; and g;), while the variation
of the substituent can be described by a
single parameter (o;). The nature of this
assymmetry can, moreover, be formulated
in stringent mathematical terms as follows
(a full account of this treatment is given
in Ref. 6):

Consider the variation in reaction center
in scheme I as being described (formally)
by the macroscopic variable ¢, varying
among the states #; with each state cor-
responding to a particular reaction Y;—»Z;.
Similarly, the variation of the substituent
(X; in scheme I) is described by the
Varlable r with the states 7. In addltlon,
the influence of these macroscopic vari-
ables (¢ and r) on the observed variable
(log k;;) is symbolized to occur via the
mlcroscoplc (hypothetical) vector vari-
ables z and X, respectively.

N
=

t, =

log k;; 1

ﬂ

Hence, log k;; is a function of two vector
variables, say F(z,x) The behaviour of
this function can be studied by means of
Taylor expansions; different cases can be
seen:

1. The vector varlables z and X contain
only one independent variable each,
denoted by z and x, respectively. The
Taylor expansion is, in the usual symbols:

log ki; = F(z,2) = F(zo2,) + F,'(z—2,) +
Fx,(x_xu) + 1k-Fz.!N(z_zo)2 + sz”(z_zo)
(@ —m0) + ¥y, (x —24)* + R(3) = F(20,%,) —
leFx’/sz" + (Fx, + sz”(z—zo) +
Fzz”sz”(z_zo)z/ze,)(Fz,/Fzr” +
(x—w,) + Fxx,I/2Fx/(x_xo)2) + Ry(3)

=C + h(z)g(x) + Ry(3) (4)
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Here F,’ denotes the value of 6F/éx at the
point (24,%,) and so on. The remainders,
R(3) and R,(3), which are different, contain
terms of third and higher orders, such as
Fuz”’(z—zo)(x_xo)z' . .

Since now the macroscopic variables ¢
and r vary discretely, so do the microscopic
variables z and z. Rewriting h(z;) as §; and
g(x;) as 6;, we see that, provided that the
variation of the microscopic variables z
and z over the experimental range of ¢ and
r is sufficiently small to make the remainder
R,(3) small compared to the errors of
measurement of log k,;, the data will in this
first case conform well to the simple one-
component model:

log kij = c+ B; 6; + e;; (5)

2. Analogously, it can be shown that for
the case that the vector variable z contains
several independent variables while the

vector variable X still contains only one, a
second order approximation is ®

F(z,x) = f(2) + h(z)g(2) + B(3)  (6)

which, translated to the discrete case in
the same way as above, gives:

log kj; = a; + Bi0; + ej; (7)

3. Finally, higher order approximations
of functions in both single variables and
vector variables (z and/or X) all give the
same discrete model:

M
log kij = o; + zlﬁiaoaj + i (8)
Pl

We are now in the position to make a
rigorous interpretation of the simple
Hammett equation (1b) which is seen to
be equivalent to eqn. (7). This implies that
several microscopic variables (denoted by
the vector z) vary with the variation of
the reaction center (the macroscopic vari-
able t), while only one microscopic variable
(x) varies with the variation of the sub-
stituent (the macroscopic variable 7). In
addition, the variation of these microscopic
variables over the experimental range
where the Hammett equation is valid, 18
so small that the second order approxima-
tion holds good (R(3) is small).

The formalism of Hine and Wepster is
relevant only for cases when data are well
fitted by the simpler model (5), indicating
that both the reaction variable and the
substituent variable influence the reaction
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rate (or equilibrium constant) via one
single microscopic variable each.

From the present derivation it also
follows that it is of less importance which
transformation of the observed data which
is used in the models. The function F(z,z)
can as well correspond to V'k;; or log log k;
as to log k;. The parameter scales will
naturally be different, but there is
presently no indication that log k;; will
always be the best transformation for the
use in an empirical model of the ETR type.

Finally, the present treatment shows
that, since the influence of any number of
macroscopic variables can be incorporated
in the variable z, it is indeed possible to
formulate the Hammett equation and other
similar ETR’s with a single substituent
scale which is independent of temperature,
pressure, solvent, and so on. The influence
of the latter variables can in principle be
incorporated in the vector variable z and
hence be described by the two parameters
o; and g; in eqn. (1b). Whether this is
possible for a particular class of chemical
phenomena, however, is a question that
only can be settled by the analysis of cor-
responding emprical data. The present
derivation only shows the possible existence
of such a single substituent scale, not the
experimental domain where it is applicable.
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