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Structural Studies on the Rare Earth Carboxylates

18. The Crystal and Molecular Structure of Hexa-aquo Tris-malonato
Di-neodymium (III)
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The crystal and molecular structure of Nd,(C,H,0,);.6H,0 has
been determined from three-dimensional, photographic, X-ray inten-
sity data. Four formula units ecrystallize in a monoclinic unit cell
with the dimensions a=11.210(2) A, 5=12.383(2) A, ¢=13.696(3) A,
and f=93.01(2)°. The space group is I2/a. The neodymium malonate
hexahydrate is metastable and passes into the corresponding octa-
hydrate when stored in the mother liquor. The structure is a three-
dimensional neodymium-malonate network and is closely related to
that of the octahydrate. The neodymium ion is coordinated by six
carboxylate and three water oxygens forming a distorted mono-
capped square antiprism. The Nd—O bond distances are in the
range 2.35—2.61 A. One of the two independent malonate ions has
strict twofold symmetry. The two oxygens of its carboxylate group
are bonded to the same neodymium ion and one of them is also
bonded to an adjacent neodymium ion. The other malonate ion
forms a six-membered chelate ring with neodymium and also con-
nects the neodymium ion with an adjacent one by a bridge of the
type Nd —OCO —Nd. The chelate ring has a boat conformation and
both malonate ions are nonplanar. The water molecules form hydro-
gen bonds with O—O distances in the range 2.74—2.85 A.

This work is part of a systematic study of the structures of the lan-
thanoid malonate compounds M,mal,.nH,0 (M=Ilanthanoid, mal=
O0OCCH,CO0%~, and »=6 or 8) undertaken to get some information of the
conformation of the malonate ions and the arrangement of the ligand atoms
around the central ion in lanthanoid malonate complexes.

The structure of the compound Nd,mal,.8H,0 (NDO) has been reported
previously.! This paper deals with the structure of the compound Nd,mal,.
6H,0 (NDH) which is metastable relative to NDO at room temperature.
The unit cell dimensions of NDH and NDO are closely related (see below)
indicating that the two structures may be similar. With different numbers

Acta Chem. Scand. 27 (1973) No. 8 9



2814 EVA HANSSON

of crystal water the hydrogen bond systems must, however, be different in
the two compounds.

In NDO, one malonate ion forms a six-membered chelate ring with neo-
dymium. Since very little is known about the preferred conformation of
chelated malonate rings,? it was regarded with special interest. One of its
non-chelating oxygens is bonded to an adjacent neodymium and the other
oxygens are hydrogen bonded to water molecules. It must be assumed that
this bonding plays an important part in determining the precise conformation
of the ring, and it is then of interest to study the neodymium malonate che-
Jate ring in a different hydrogen bond situation.

EXPERIMENTAL

The method of preparation and the habit of the crystals of NDH have been de-
scribed in Ref. 1.

A crystal of the dimensions 0.10x 0.09 x 0.20 mm® mounted along the 0.20 mm
. edge was used in recording the layers hk0—hkl5. 1869 measurable reflexions were re-
corded with the integrated multiple-film Weissenberg technique using Zr-filtered MoK x-
radiation. 1520 of these reflexions were within the Cu-sphere representing 60 9; of the
possible number. The intensities were measured visually by comparison with a cali-
brated scale. The data were corrected for Lorentz, polarisation, and absorption effects.
The linear absorption coefficient is 55 ¢m™' and the transmission factors evaluated
by numerical integration were in the range 0.58 —0.62.

UNIT CELL AND SPACE GROUP

The crystals of NDH are monoclinic. The unit cell is C-centered with
a=18.15 Ay b=12.38 A, c=11.21 A, and f=131.1°. Z=4. The alternative
choice of axis along [001], [010], and [101] results in a bodycentered cell
with a=11.210(2) A, b=12.383(2) A, ¢=13.696(3) A, and f=93.01(2)°. This
cell is similar to that of NDO which is orthorhombic with a=11.26 A, b=
12.60 A, and c=14.69 A, and was chosen for the description in order to fa-
cilitate the comparison between the two structures. The accurate values of
the cell parameters were determined from powder data by least squares re-
finement as described before.® Table 1 gives the experimental values of sin%6
together with those calculated in the last cycle of refinement.

The systematically absent reflexions are hkl: h+k+1£2n and hOl: h=%2n.
The possible space groups are then Ja and I2/a. The concentration of peaks
in the Patterson section P(x0z) indicated the space group I12/a. The structure
was accordingly assumed to be centrosymmetric and the subsequent refine-
ments gave no reason for changing this assumption. The general position
of the space group I2/a is eightfold: (0,0,0;1/2,1/2,1/2) + (%,y,2; Z,y,1/2—=z).
The conventional space group corresponding to I2/a is C2/c. The trans-
formation of indices from the bodycentered to the C-centered cell is given
by (k,k,l)=(-1,0,—1/0,1,0/1,0,0)(A" k" l') where h'.k']l' refer to the body
centered cell.
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Table 1. Powder data for Nd,(C,H,0,);.6H,0. Observed and calculated values of
. 10°sin® 6 are given together with the observed powder intensities.

obs cale Iops hkl obs cale Tops

Mkl

011 704 705 vvw 224 . 8856

110 860 862 M ~134 8869 8882 w

002 1267 1271 vs ~314 9250 9250 w

020 1547 1550 s ~143 9421 9412 vw
~112 2050 2051 s 242 9529 9531 vvw
—-121 2380 2383 s 125 10166 10170 w
211 2516 2521 s 314 10242 10227 vvw

211 2683 2684 s -341 10675 10665 w

013 3242 3247 vvw 413 11835 11323 )

202 3331 3331 w —-152 11352 w

310 4648 4656 m 035 11426 11430 vw

229 4886 4881 vw —404 12011 12020 w

123 5003 5006 m —116 12069 12054 w
~-132 5152 5152 vw 116 12545 12542 w

213 5379 5388 m —-206 12861 12845 w
~231 5618 5621 m -325 13163 13150 w
-321 6006 6014 w 244 13495 13506 m

312 6168 6171 m 521 13521

033 6340 6347 w 512 13922
—141 6954 6952 w 521 13935 13928 s

204 7293 7305 vw 060 13952

042 7483 7472 m 350 13957

330 7767 7756 vvw 433 14429 14423 w
-233 7998 8000 w -352 14974 14984 w
-323 8309 8311 m ~154 15074 15083 m

411 8464 8456 m 062 15224 15223 vw
—402 8528 8533 vvw 352 15476 15472 W
~-332 8764 8783 vvw -523 15668 15655 v

DETERMINATION AND REFINEMENT OF THE STRUCTURE

The structure of NDH was determined by the heavy atom method. A
three-dimensional Patterson synthesis revealed the position of neodymium
and the positions of the remaining 14 non-hydrogen atoms were obtained
from the subsequent difference electron density calculation.

The preliminary atomic coordinates, isotropic temperature factors, and
inter layer scale factors were improved by least squares refinement. The
function minimized was Jw(|F |—|F|)2. The weights, w, were chosen ac-
cording to Cruickshank ¢ and only the reflexions with 0.80 <|F |/|F |<1.25
were included in the refinement. The atomic scattering factors for the neutral
atoms were for carbon and oxygen taken from International Tables * and
for neodymium from Cromer et al.®

The discrepancy indexes R=3}|F |—|F||/>|F| and wR=[Jw(F,—
|2 2w\ F|2]* converged to 0.094 and 0.098, respectively. All the observed
reflexions were included in the calculation of R. Further refinement, now
with anisotropic thermal parameters for neodymium and an over all scale-
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factor, resulted in R=0.084 and wR=0.088. In the last cycle of refinement
the shifts of all parameters were less than 1 9, of their estimated standard
deviations.

The approximate constancy of the averages of w(|F |—|F |)?* between
different |F | and sin 6 intervals indicated that the weighting scheme used
was reasonable. (Table 2).

Table 2. Analysis of the weighting scheme w=1/(10+|F, 4+ 0.01{F*). The averages

Number of w4 Interval Number of wAa?

Interval
F, reflexions sin 6 reflexions
0— 62 155 1.00 0.00—-0.28 328 1.10
62— 71 172 0.91 0.28 —0.35 303 0.98
71— 78 166 1.11 0.35—0.40 269 0.99
78— 85 168 0.99 0.40 — 0.44 209 0.98
85— 94 170 1.05 0.44—0.48 191 0.93
94— 106 175 1.05 0.48—0.51 166 0.83
106—121 179 1.12 0.51-0.53 105 1.02
121-142 179 1.03 0.53 —0.56 80 1.25
142 -177 182 0.74 0.56 —0.58 37 1.11
177 — 446 184 1.00 0.58 —0.60 24 0.81

Table 3. Atomic parameters with estimated standard deviations for the compound
Nd,(H,C,0,),.6H,0.

Atom Sroup  x 10 y % 10* 2x 104 B/A:

Nd 1537.1(5) 1020.4(5) 335.1(5) (1.14)2
o(1) c00~ 1404(10) 78(10) 1990(9) 2.5(2)
0(2) COO~ —3(7) —405(8) 898(7) 1.3(1)
0(3) C00~ 2354(9) —812(8) 254(8) 1.8(1)
0(4) o0~ 3384(11) ~2322(11) 499(10) 2.8(2)
0(5) CcO0~ 3610(10) 1033(10) 891(8) 2.3(2)
0(6) COO~ 5502(13) 656(13) 1215(11) 3.5(2)
o(17) H.0 —460(11) 1854(11) 674(9) 3.0(2)
0(8) H,0 1724(15) 2473(12) 1653(12) 4.2(3)
0(9) H,0 2574(10) 687(10) —1249(9) 2.5(2)
(1) 0 —1238(21) 1/4 2.9(4)
C(2) 494(11) —484(12) 1743(10) 1.6(2)
C(3) 3180(12) —1335(12) 625(11) 1.9(2)
C(4) 4134(13) —1792(13) 1302(12) 2.1(2)
Cc(5) 4458(10) 383(11) 1086(9) 1.4(2)

4 The anisotropic thermal parameters for neodymium, calculated from the expression:
exp [~ (h2fyy+ 2hkB1g+....)] e  B1;=0.00234(4), B,,=0.00148(3), Bss=0.00190(3), =
—0.00004(4), B,5= —0.00023(2), and B,;=10.00009(4), resulting in root mean square displace-
ments along the principal axis of the thermal ellipsoid R,=0.141 (A), R,=0.107 (A), and R,=
0.116 (A).
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Table 4. Observed and calculated structure factors in Nd,(C,H,0,),.6H;0. The 139
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Table 4. Continued.

6 120 126 =5 127 113 =7 75 47 He & ¥a 0 1113 1 9 T8 S ha 9 geety Ne 19 ye=1é
L} 80 115 «3 11 159 -5 2R 124 16 97 0% 3155 153 1" *°0 a2 -12 73 75 o 73 ST
1 " 13 =1 17 175 -y )71 157 -t4 115 115 5 146 134 13 °8 108 =10 70 72
1 218 212 -t 10 9% 12 127 12 7 110 115 15 105 104 -8 66 L He 10 xwetd
He 5 Keal§ 3 176 15A 9 72 (14 =10 163 162 9 a3 77 83 " -4 (] 8t
0. &7 5 109 199 7 5% 667 8 175 18>
’ 65 &0 9 122 104 -6 145 12¢ Hs 7 (e <3
He 5 Kes13 11 712 72 1% 103 88 -4 106 B4 6 9% 91
-8 73 75 13 36 86 «2 123 213 -6 120 108
-6 ” L1 15 72 " He 6 km =8 2 156 279« -2 7% 49
- (33 4 -12 7 7 4 291 300 2 o4 62
0 o 72 e 8§ ke =3 <tg 72 M ¢ 182 180 & S8 ASe
-8 1 . - 57 51 10 26 86
e S gent2 - 73 < 9 &7 re 7 xwetn
-7 ”" T3¢ =4 124 t8 0 156 158 3 0 b He 7 kw =2
15 ” 80 *2 111 102 2 120 110 ~13 102 113
.13 9% L1 2 72 S57e 4 ST 48 He 7 KwalS “11 164 173
=11 ” 73 & 190 187 6 5% e -4 106 72 “9 189 192
=S 72 L1 6 126 118 4 123 1M =7 185 197
=3 170 160 " 92 N 6 Kw 7 «2 1% 132 -5 ” .92
-t 175 1% -19 a2 79 0 101 109 1125 120
1176 19 ()] 2 88 n 3 22y 227
3 146 13 114 5 227 2e¢
LI - T 1 4 188 Ne 7 Ka=14 T 235 256
17 ” 101 224 1 82 53« ? 143 168
13 % 107 244 b E 1) T2 1" 81 73
15101 0 140 1s 82 mn
46 He 7 Keeld
S Keelt ”0 6 86 610 He 7 Mo o1
(24 ” 133 -2 ” (13 16 144 93
100 ” 164 L] 7 1 -t4 82 ”w
95 ” 177 12 T m”
" 10 L T 13 115 125 e 7 Kee12 -2 8 76
13} 70 11 114 120 -1t 113 -6 114 108

TR DS Ha S xe =9

12 6
He 5 ke w9 @10 145 141
-12 -8 143 434

-6 185 183y 4 S 193
~% 110 118 6 184 184
-2 90 a Ro179 178

3 *" L1}

6 188 207 He 8 gKe=14
158 164 He & Keet? 8 88 7

10 7 96 -7 81 100
12 kAl 7 =5 123 110 Ha B ge=14
-3 86 88 105 100
He 3 K= ~3 5 80 63s 101 98
-1? 97 93 r Lt a6 ” 990
=15 998 105 8% 76
-1x 91 97 He A& ka=14A 12 17
=11 85 82 -2 75 55 116 115
*5° 135 105¢ 0 8 76 3 8s

-3 225 213 2 75 L1
=1 273 255 - ”n 67 He 8 Kw=1X
17261 228 -3 3 9
3 168 159 He 6 Kmei4 =1 110 116
S S4 52 =12 80 86 1 110 128
11 9 103 -10 100 93 3 103 108
13 161 133 =2 29 .13 H 82 "

1r L) 2147 44 He B xa-19
4132 118 S A 1]

He 5 x® =7 4 73 7 -1 83 90
=10 61" 43¢ + 108 112
-8 61 [T He 6 r==13 3 121 104
-4 (1] 66 -9 73 75 5 5 67

He 8 ke=q0

=% 105 129

5 (1 79 -4 138 186

T o119 11 =4 139 138

113 109 -2 79 a0
1 77 103 ° 60 45

) 8 112

He 6 xmat1y 6 135 13?7

=7 107 108 8 142 159

=5 127 130
1 1P t66 <3 433 ee

3 109 104 -1 76 68 He 8 ge =9
11 82 & 159 s¢ -3 82 7 He 9 Kue1s s
13 97 106 S 81 75 -t 80 81 -5 78 73 7
15 97 100 79 100 1 8 87 -3 77 8 9
81 a7 3 9 85 1
He 5 gm «§ 1" 72 87 He 9 ReeqS 13
2 106 121 He R g= =8 [ 73 7 15
-te 157 179 He & Kw=10 -8 68 60 2 124 114
-8 184 188 -14 97 98 -6 % 79 A 97 12se He
-6 148 156 =12 118 127 -t 60 59 6 100 92 .14
¢ 175 179 =10 101 107 6 85 77 -12
-2 106 99 -8 9 9% 8 70 7 N 9 gEa3 ~10
0 82 60¢ -4 57 67 2 73 70 -8
148 151 .2 118 103 He & km a7 “« & 72 -6
6 259 243 0 194 169 =15 102 106 []
6 171 194 2 197 193 =13 102 114 He 9 xe-q2 2
s 190 208 6 148 157 11 9% 110 -7 8 8 4
10 149 157 6 128 144 -9 73 65 =5 124 125 6
12 17 18 A 98 78 5 75 43 -3 132 13¢ s
1272 e -3 103 100 -t 120 122
W5 ke =4 "% 76 95 <1 200 204 1 6 et He
=15 1 33 as 9 208 235 7 *°0 87 -1
~13 77 83 Ha & ke =9 3 239 232 % 104 -




RARE EARTH CARBOXYLATES 18 2819

Table L. Continued.
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The final atomic parameters are given in Table 3 and the observed struc-
turc factors are compared with those calculated in the last cycle of refine-
ment in Table 4. The electron density maps of a difference synthesis based
on the parameters in Table 3 showed only spurious peaks, all less than 2 e/A3.

All computations were performed on the UNIVAC 1108 computer at
Lund, Sweden, using the programmes DRF, LALS, DISTAN, PLANE,
CELSIUS, and ORTEP.?

DESCRIPTION OF THE STRUCTURE

The structures of NDH and NDO are closely related. In the following
description the structure of NDH is mainly compared to that of NDO which
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was reported in Ref. 1. References to other related structures were given
in that paper. The notation of the atoms is the same as that used in Ref. 1,
and the superscripts (i)—(x) indicate the following equivalent positions of
the structure, ’

9,2 : (v) 1/242,1/2—-yz2 (vill) a,gz—1/2
(i) Z£,9%2 (v) x-1/2,1/2—y,2 (ix) a,9,1/2+¢z
@) &yl/2-=z (vi) 1/2-2,1/2+4+y,2. (x) 12—ay—1/22
(iil) 1-a,7,% (vii) 1/2—,1/2—y,1/2—2

where w,y,z are the atomic coordinates given in Table 3. The numbering of
the atoms constituting the two independent malonate ions, referred to as
ligand 1 and ligand 2, is given in Fig. 4.

The general features of the structure are shown in Figs. 1 and 2. The
neodymium ions are held together in pairs by oxygen bridges formed by the
carboxylate oxygen O(2) of ligand 1 (Fig. 1). These pairs are situated at

Fig. 1. A stereoscopic pair of drawings showing part of two adjacent neodymium
malonate networks and the bonding between them. Bonds within the malonate ions
are filled, hydrogen bonds are open and Nd—O bonds are single lines. The broken line
indicates the possible hydrogen bond distance O(8)—0(8"%). The intra-network hydro-
gen bonds are omitted for clarity. The box outlined is 0<z<1, 0<y< 1/2, 0<2<1/2.

Fig. 2. A stereoscopic pair of drawings illustrating the neodymium malonate network
around z=0. The bonds are indicated in the same way as in Fig. 1. The box outlined
is 0<x<1, 0<y<l, —1/4<z<1/4.
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the levels 2= 0 and z=1/2. The methylene carbon of ligand 1, C(1), is situated
on the twofold axis =0, z=1/4 and ligand 1 thus connects the neodymium
pairs in the z-direction.

Within the same z-level, each neodymium pair is bonded to four adjacent
pairs by bridges of the type Nd—OCO —Nd, formed by ligand 2 (Fig. 2).
In this way infinite neodymium-malonate networks parallel with (001) are
formed.

The structure of NDO contains corresponding neodymium pairs bonded
to each other in a similar manner, but while adjacent pairs at the same z-
level are related by the a-glide in NDH, they are related by the b-glide in
NDO.

The three water molecules are all coordinated to neodymium. They form
hydrogen bonds to the oxygens of ligand 2 within the neodymium malonate
network (Fig. 2) and one of them, O(9), is also hydrogen bonded to a car-
boxylate oxygen, O(1), of an adjacent network (Fig. 1). The intra-network
hydrogen bonds are arranged in almost the same way as found in NDO, but
corresponding distances between hydrogen bended oxygens are about 0.1 A
longer in NDH than in NDO. The inter-network hydrogen bonds, which in
NDH are formed directly between a water molecule of one network and a
carboxylate oxygen of an adjacent one, are in NDO formed via a water mole-
cule located between the networks. This is the essential difference between
the two hydrogen bond systems, and results in a decrease in the distance
between adjacent networks as indicated by the change in length of the c-axis
from 14.69 A in NDO to 13.69 A in NDH.

The coordination polyhedron. Fig. 3 shows the coordination around the
pair of neodymium ions. There are nine oxygens coordinated to each neo-

Fig. 3. A stereoscopic pair of drawings showing the coordination polyhedra around
the neodymium ions Nd and Nd*. Nd—O bonds are single lines, the bonds within the
malonate ions are filled and the edges of the square antiprism are open.

dymium, six carboxylate oxygens from four malonate ions and three water
oxygens. The coordination polyhedron is an intermediate between a mono-
capped square antiprism (CSAP) and a tricapped trigonal prism (TCTP).
The  “square” faces of the CSAP are O(1)-0(7)—0(2")—0(3) and O(4")—
0(9) — O(5) — O(8) and the TCTP has the triangular faces O(1) — O(3) — O(5) and
0(2%) — O(7) - O(4%). There is a close relationship between the idealized forms
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of TCTP and CSAP 8 and with the rather irregular polyhedron dealt with
here, the choice of description seems to be a matter of semantics. The CSAP
model is chosen in order to facilitate a comparison with the distorted CSAP
formed around neodymium in NDO. The dimensions of the coordination
polyhedron are given in Table 5 A.

The average Nd—O bond distance is 2.50 A; the same value as found
in NDO. Two of the distances deviate considerably from this average, viz.
Nd—0O(4): 2.35 A, and Nd-0(2): 2.61 A, while the others are in the range
2.41—-2.56 A. The bond Nd — O(2) is part of the oxygen bridge Nd...O(2)..-Nd'.
The distance O(2)—Nd‘ is 2.47 A and Nd...Nd' is 4.33 A. This bridge is
less asymmetric in NDH than in NDO where the corresponding distances
are 2.72 A, 2.46 A, and 4.42 A. The distance Nd..-Nd’ is the shortest Nd..-Nd
distance of the structure. The next shortest one, 6.58 A, is between the neo-
dymium ions Nd and Nd" coupled by the bridging carboxylate group
0O(3)C(3)0(4).

The average ““contact’ distance between coordinated oxygens not belong-
ing to the same malonate ion is 2.96 A as compared to 3.00 A in NDO. Two
of these distances are shorter than 2.8 A, wziz. 0(2)...0(2i): 2.66 A and
0(3)---0(9): 2.79 A.

The coordination around Nd is very similar in NDH and NDO (see Fig. 3
in Ref. 1 and Fig. 3). Apart from the fact that the oxygens O(8) and O(4*)
change places between the two structures there are only minor rearrange-
ments. The coordination polyhedron in NDO is best described as a distorted
CUSAP. The slight distortions that occur in going from NDO to NDH bring
the polyhedron closer to the TCTP model. This change of the polyhedron
may be described as follows: The quadrangle O(1)—O0(7)—0(2)—0(3) is-
equilateral within 0.1 A in NDO. In NDH it is approximately rectangular
with the edges 3.48 A, 2.87 A, 3.36 A, and 2.85 A. In both structures the
four atoms are coplanar within 0.2 A. The other quadrangle, formed by the
oxygens O(4), 0(9), O(5), and O(8) is equilateral within 0.1 A in both struc-
tures. The four atoms are coplanar within 0.1 A in NDO. In NDH they de-
viate +0.3 A from the least squares plane through them, in the directions
expected in a TCTP. Further, the bond distance between neodymium and
the capping oxygen O(2) is in NDO 2.72 A, i.e. considerably longer than
the other Nd —O bond distances. This feature is less pronounced in NDH
where the distance Nd—0(2) is 2.61 A

Ligand 2 forms a six-membered chelate ring with neodymium. The ring
has a boat conformation. The atoms O(3), C(3), C(5), and O(5) are coplanar
within 0.06 A and the atoms Nd and C(4) are situated 0.32 and 0.44 A at !
same side of the plane (Table 6). The corresponding values in NDO are .1z
and 0.50 A, and hence the changes in its crystallographic surroundings result
in a flattening of the ring in going from NDO to NDH.

The malonate ions. The dimensions of the two independent malonate ions
are given in Table 5 and are also indicated in Fig. 4. The bond distances
and angles are in agreement with those found in NDO, with two exceptions,
viz. the angle C(2)—C(1)—-C(2%) which is 104° in NDH and 113° in NDO
and the angle C(4)—C(3)—O(4) which is 1127 in NDH and 120° in NDO.
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LIGAND 1 LIGAND 2

Fig. 4. The two malonate ions and their immediate surroundings, together with pro-
jections of each malonate ion along its C—C bonds. The angles indicated in these pro-
jections are the dihedral angles C—-C—-C-O.

The three independent C —COO groups are planar (Table 6). The methyl-
ene carbon C(1) of ligand 1 is situated on a twofold axis and the dibedral
angle C(2%)—C(1)—C(2)—0(1) is 69°, which means that the two COO-groups.
are twisted through this angle in opposite directions out of the carbon chain
plane. The resulting intramolecular separations between oxygens of different
COO-groups are O(1)---0(2%): 3.42 A and O(1)..-0(1%): 3.51 A. In NDO the
corresponding twist is 50° and the O—O distances are O(1)—O0(2): 3.78 A
and O(1)—O(1%): 3.24 A.

In ligand 2, the dihedral angles O(3) —C(3) —C(4) - C(5) and O(5)—C(5) —
C(4)-C(3) are 33° and 45°, respectively, and the carboxylate groups are
twisted in the same direction out of the plane of the three carbon atoms.
The shortest intramolecular separation between oxygens of different car-
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Table 5. Selected interatomic distances (A) and angles (°) with their estimated standard

deviations.
A. The coordination polyhedron
Nd -0(1) 2.56(1) 0(2') - O(4™) 3.37(2)
Nd - 0(2%) 2.47(1) 0(2)-0(7) 2.87(2)
Nd-0(3) 2.45(1) 0(2/)—0(9) 2.97(2)
Nd —-0(4%) 2.35(1) 0(2)—-0(2) 2.66(2)
Nd - 0(5) 2.41(1) 0(3)—-0(56) 2.80(2)
Nd—-0(7) 2.53(1) 0(3)—0(9) 2.79(2)
Nd -0(8) 2.55(2) 0(3)-0(2) 2.87(2)
Nd—0(9) 2.55(1) 0O(4%%) — O(5) 3.51(2)
Nd-0(2) 2.61(1) O(4¥1) - O(7) 3.07(2)
O(1)—-0(3) 2.88(2) 0O(47%) -~ O(8) 2.96(2)
0O(1)—-0(5) 3.19(2) 0(47) —0(9) 2.90(2)
O(1)—0O(7) 3.47(2) 0(5)—0(8) 3.00(2)
O(1)—-0(8) 3.03(2) 0O(5)—-0(9) 3.12(2)
O(1)-0(2) 2.20(1) O(7)-0(8) 2.84(2)
0(2%) - 0(3) 3.36(1) O(7)—0(2) 2.86(2)
B. Ligand 1
C(1)—C(2) 1.52(2) C(2)—C(1)—C(2") 104(2)
C(2)—-0(1) 1.27(2) O(1)-C(2)—-0(2) 121(1)
C(2)-0(2) 1.26(2) C(1)-C(2)—-0(1) 118(1)
C(1)—-C(2)-0(2) 121(1)
C. Ligand 2
C(4)—-C(3) 1.53(2) C(3)—C(4)—-C(5) 118(1)
C(4)—C(5) 1.53(2) 0O(3)—-C(3)—0(4) 127(2)
C(3)—0(3) 1.22(2) C(4)—~C(3)—-0(3) 121(1)
C(3)—0(4) 1.26(2) C(4)—-C(3)—-0(4) 113(1)
C(5) - 0O(5) 1.26(2) 0(5) —C(5)— O(6) 124(1)
C(5)—0(6) 1.22(2) C(4) — C(5)— O(5) 118(1)
C(4) —C(5)—0O(6) 118(1)
D. Possible hydrogen bonds
O(7)—0(3") 2.74(2) 0(8) — O(8v%) 2.83(2)
O(7)—0(5Y) 2.84(2) 0(9) — O(6#) 2.72(2)
0(8)—0(6Y) 2.74(2) 0(9) — O(1vii) 2.85(2)

boxylate groups, the ligand bite O(3)—O(5), is 2.80 A. This conformation is
slightly different from that found for ligand 2 in NDO where the twists are

42° and 48° and the bite 2.83 A.

The hydrogen bonds. The distances suitable for hydrogen bond formation,
i.e. the distances (Hy)O—O between oxygens not belonging to the same
coordination polyhedron ® sherter than 3.20 A, are collected in Table 5.
They are also indicated in Fig. 5 which illustrates a probable hydrogen bond

scheme.

The water molecule O(7) forms two hydrogen bonds, each to a car-
boxylate oxygen within the neodymium-malonate network, viz. O(7)..-O(3*) and
O(7)---0(5"). The water molecule 0(9) also forms two hydrogen bonds, one
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Table 6. Deviations in A from least squares-planes within the malonate ions and the
coordination polyhedron. The atoms defining the plane are in each case given above
the asterisk.

A. The malonate ions

Atom  Distance Atom  Distance Atom  Distance Atom  Distance
c(1) 0.00 C(4) 0.00 C(4) —-0.01 C(3) —0.06
C(2) —0.00 C(3) —0.01 C(5) 0.04 C(5) 0.06
0o(1) 0.00 0(3) 0.00 0(5) —0.01 0(3) 0.06
0(2) 0.00 0(4) 0.00 0(6) —~0.02 0(5) —0.05

* * * *

Nd. —0.07 Nd —-0.14 Nd 0.36 Nd -0.32
Nd* 0.10 Nd* 0.55 C(4) —0.44
B. The coordination polyhedron - S

Atom  Distance Atom  Distance
0(3) —-0.23 0(8) 0.31
o(1) 0.22 o(4%) —0.33
o(7) —0.22 0(5) ~0.28
0(2%) 0.23 0(9) 0.30

* *
Nd ~1.16 Nd 1.30

to the carboxylate oxygen O(6%) within the neodymium malonate network
and the other to the carboxylate oxygen O(1'#) of an adjacent network.

The hydrogen bond situation of the water molecule O(8) is less evident.
One of its hydrogen atoms is engaged in an intra-network hydrogen bond
to the carboxylate oxygen O(6%). The position of the second hydrogen atom

Fig. 5. The immediate surroundings of the three water molecules. Hydrogen bonds
are open and Nd—O bonds are single lines. The possible bond O(8)—O(8) is indi-
cated by the broken line.
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is more difficult to establish. The distance O(8)..-O(8) is 2.83 A indicating
a hydrogen bond. This interpretation implies a disordered structure in which
the center of symmetry between O(8) and O(8"%) is preserved by randomly
assigning the shared hydrogen atom to one oxygen or the other. The next
shortest O(8) — O distance outside the coordination polyhedron is O(8)...0(3"),
3.56 A. If a hydrogen bond interaction O(8)-.-O(8"") exists, it constitutes
an additional inter-network link.

Assuming a hydrogen bond O(8)..-O(8) each water oxygen is engaged
in three bonds, one to neodymium and two hydrogen bonds. The sum of
the three bond angles is 352° around O(7), 359° around O(8), and 341° around
0(9). The O—O(W)~—0 donor angles are given in Fig. 5.

There are thus four intra-network hydrogen bonds in NDH, wiz. O(7)---
0(3%), 0(7)---0(5"), O(8).--0(6"), and O(9)-.-O(6"%). Corresponding hydrogen
bonds are formed in NDO. In the latter structure they are about 0.1 A
shorter than in NDH except for the bond O(9)..-0(6%) which is of equal
length in the two structures. As mentioned earlier, the inter-network hydro-
gen bonds of NDO are formed via a water molecule situated between the
networks. The insertion of this extra water molecule in the structure results
in a hydrogen bond system where each of the water hydrogen atoms is en-
gaged in a separate bond. These features probably contribute to making
the lattice energy less for NDO than for NDH.

The hydrogen bond O(1%)...0(%) is of some interest. It is seen in Fig. 4
that ligand 1 may be regarded as chelated to neodymium via this hydrogen
bond to one of the coordinated water molecules. The existence of chelates
of this type has been suggested for the lanthanoid glycolate complexes in
solution. Both thermodynamic 1 and IR data have been interpreted in
this way. A thermodynamic study of the formation of lanthanoid malonate
complexes in solution shows that the complexes formed are fairly weak for
a chelate. Furthermore, the variation through the lanthanoid series in 4H
and 487 deviates from that ordinarily found for lanthanoid chelates. This
deviation might be explained if species with the malonate ion chelated via
a water ligand of the metal ion are formed in increasing amounts through
the series.> The existence of a corresponding chelate in the solid state supports
this idea.

REFERENCES

Hansson, E. Acta Chem. Scand. 27 (1973) 2441.

. Butler, K. R. and Snow, M. R. J. Chem. Soc. D 1971 550.

Hansson, E. Acta Chem. Scand. 27 (1973) 823.

Cruickshank, D. W. J. In Rollet, J. S. Computing Methods in Crystallography, Per-
gamon, Glasgow 1965, pp. 99—116.

. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham 1968,
Vol. III.

. Cromer, D. T., Larsson, A. C. and Waber, J. T. Acta Cryst. 17 (1964) 1044.

. Liminga, R. Acta Chem. Scand. 21 (1967) 1206.

. Muetterties, E. L. and Wright, C. M. Quart. Revs. 21 (1967) 109.

. Baur, W. H. Acta Cryst. B 28 (1972) 1456.

10. Grenthe, I. Acta Chem. Scand. 18 (1964) 283.

11. Larsson, R. Acta Chem. Scand. 19 (1965) 783.

12. Dellien, I. and Grenthe, I. T'o be published.

BRI G W=

Received March 15, 1973.

Acta Chem. Scand. 27 (1973) No. 8



