Exchange Reactions of trans-1,2-Diaminocyclohexanetetraacetate Complexes of Alkaline Earth Ions in the pH Range 8.5—10.5

ARNE JENSEN and NIELS RHOD LARSEN

The Royal Danish School of Pharmacy, Chemical Laboratory A, DK-2100 Copenhagen Ø, Denmark

The exchange reactions between the alkaline earth complexes of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraace-tate (CDTA) and Cu(II) or Pb(II) have been studied by Margerum et al.¹ and Pausch and Margerum.² The reaction rate was shown to be independent of the Cu(II) and Pb(II) concentrations. Furthermore, a linear relation was found between the reaction rate constant and the hydrogen ion concentration. The pH range investigated was 5.5-7.6 for Mg., Ca- and SrCDTA and 7.0-7.6 for BaCDTA.

The present communication describes the exchange reaction between the alkaline earth complexes of CDTA and Cu(II) in the pH range 8.5-10.5. The overall reaction was measured at 380 or 800 nm on a Durrum-Gibson stopped flow spec-

$$\begin{array}{c} \text{MCDTA}^{2-} + \text{Cu(NH}_3)_n^{2+} \xrightarrow{k_{\text{d}}} \text{CuCDTA}^{2-} + \\ \text{M}^{2+} + n\text{NH}_3 \end{array} \tag{1}$$

trophotometer for $M=Ba^{2+}$ or Sr^{2+} and on a Beckman DK-2 spectrophotometer for $M=Ca^{2+}$ or Mg^{2+} . The initial concentration of MCDTA²⁻ was 10^{-3} M, and the ionic strength and pH were adjusted using NH_4NO_3 and NH_3 .

The rate of reaction (1) is independent of the concentration of $\text{Cu}(\text{NH}_3)_n^{2+}$ when Cu^{2+} is used in an excess of 50-100. Reaction (1) is accordingly pseudo first order at constant pH with the rate constant k_A .

A plot of $k_{\rm d}$ versus [H⁺] for M=Ca²⁺ (cf. Fig. 1) indicates in the investigated pH range a linear relationship between $k_{\rm d}$ and [H⁺] which agrees with eqns. (2) and (3) as stated by Margerum et al.¹ and Pausch and Margerum.² Furthermore, titration curves of MCDTA²⁻ (M=Mg²⁺, Ca²⁺, Sr²⁺ or Ba²⁺) show that MHCDTA- and M(OH)CDTA³⁻ are not found in the solutions used in the present investigation

where the hydrogen ion concentration is low.

$$\frac{\mathrm{d}[\mathrm{CuCDTA^{2-}}]}{\mathrm{d}t} = k_{\mathrm{d}}[\mathrm{MCDTA^{2-}}] = k^{\mathrm{MCDTA}}$$

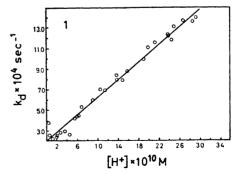
$$[MCDTA^{2-}] + k_H^{MCDTA}[H^+][MCDTA^{2-}]$$
 (2)

$$k_{\rm d} = k^{\rm MCDTA} + k_{\rm H}^{\rm MCDTA}[\rm H^+] \tag{3}$$

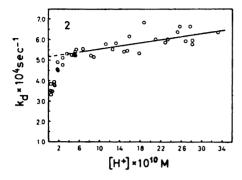
Figs. 2, 3, and 4 show plots of $k_{\rm d}$ versus $[{\rm H^+}]$ for ${\rm M=Mg^{2^+}, Sr^{2^+}}$, and ${\rm Ba^{2^+}, respectively}$. From these plots it is seen that eqn. (2) is quantitatively correct only in the pH range 8.5-9.2

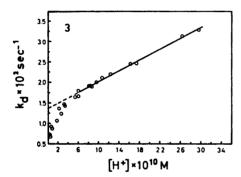
the pH range 8.5-9.2. $k^{\rm MCDTA}$ and $k_{\rm H}^{\rm MCDTA}$ in Table 1 have been calculated from Figs. 1, 2, 3, and 4 using the relationship given in eqn. (3). The calculation for $M=Mg^{2+}$, Sr^{2+} , and Ba^{2+} has been carried out in the pH range mentioned above where the linear

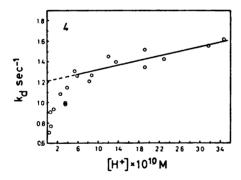
Table 1. Rate constants for the dissociation of MCDTA²⁻ complexes.⁴


		sec ⁻¹		
Mg	5.2×10^{-4}	3.8×10^{4}	8.5-9.2	
α-	$(0)^b$	$(6.33 \times 10^4)^b$	$(5.5-7.6)^b$	

k_HMCDTAM⁻¹ pH range


 M^{2+} k^{MCDTA} sec⁻¹


	$(0)^b$	$(6.33 \times 10^4)^b$	$(5.5-7.6)^{0}$
Ca	2.1×10^{-4}	4.2×10^{5}	8.5 - 10.5
	$(0)^{b}$	$(4.14 \times 10^5)^b$	$(5.5-7.6)^b$
Sr	1.4×10^{-2}	6.7×10^{6}	8.5 - 9.2
	$(3.0 \times 10^{-2})^b$	$(6.06 \times 10^6)^b$	$(5.5-7.6)^b$
Ba	1.2	1.1×10^{8}	8.5 - 9.2
	$(4.4)^{b}$	$(1.05 \times 10^8)^b$	$(7.0-7.6)^b$


 a Calculated from eqn. (3) by a least squares method; for the calculation of $k^{\rm MCDTA}$ see text; initial [MCDTA²-] = 10^{-3} M; (Cu(NH₃)_n²+] = 10^{-1} M; NH₄+/NH₃ buffer; $\mu = 0.5;~25.0^{\circ}{\rm C}.$ b From Ref. 2; $\mu = 0.5;~25.0^{\circ}{\rm C}.$

Acta Chem. Scand. 27 (1973) No. 5

Figs. 1-4. Hydrogen ion dependence on the observed first-order rate constants $k_{\rm d}$ for, respectively, CaCDTA²⁻, MgCDTA²⁻, SrCDTA³⁻, and BaCDTA²⁻.

relation between $k_{\rm d}$ and $[{\rm H^+}]$ exists. These two rate constants have also been determined by Pausch and Margerum.² Satisfactory agreement was found between their values and the constants calculated in the present work (Table 1).

Figs. 2, 3, and 4 also show that the plots of $k_{\rm d}$ versus [H⁺] deviate from the straight line in the pH range 9.2–10.5 for ${\rm M=Mg^{2+}}$, ${\rm Sr^{2+}}$ or ${\rm Ba^{2+}}$. Eqn. (3) is therefore not correct. $k^{\rm MCDTA}$, when interpreted as the rate constant for the direct dissociation of the CDTA complex, is accordingly smaller than stated in Table 1.

From the observed [H⁺] profile, it is reasonable to conclude that $k_{\rm H}^{\rm MCDTA}$ is probably a complex function of the hydrogen ion concentration. The [H⁺] dependence of $k_{\rm H}^{\rm MCDTA}$ is negligible for pH < 9.2; cf. Table 1.

Nyssen and Margerum ³ have studied the kinetics of both dissociation and formation of LaCDTA⁻ in the pH range 4.2-6.0. Eqn. (3) was found to be valid for the dissociation. These authors ³ have shown that the rate-determining step for the formation of LaCDTA⁻ had to be placed after a fast formation of a reaction intermediate. The rate-determining step of formation of LaCDTA⁻, as well as of the alkaline earth complexes of CDTA, ² is not the characteristic water exchange rate of the hydrated metal ion. Furthermore, the rate of formation of LaCDTA⁻ was found to increase with decreasing [H⁺], ³

found to increase with decreasing $[H^+]$.³
The $[H^+]$ profile in Figs. 2, 3, and 4 may possibly be explained by assuming the same kinetics of formation for LaCDTA⁻ and for MCDTA⁻ ($M^2 + = Mg^{2+}$, Sr^{2+} or Ba^{2+}). The complexity of k_H^{MCDTA} in this investigation may then be rendered more comprehensible by using a "Steady State" approximation for the reaction intermediate similar to that described for LaCDTA⁻.

Parallel studies 4 on the rate of dissociation of these complexes are being carried out in this laboratory using the exchange of optically active CDTA instead of metal ion exchange. The studies confirm the $[H^+]$ profile of these reactions for $M^{2+} = Mg^{2+}$, Ca^{2+} , Sr^{2+} or Ba^{2+} .

- Margerum, D. W., Menardi, P. J. and Janes, D. L. Inorg. Chem. 6 (1967) 283.
- Pausch, J. B. and Margerum, D. W. Anal. Chem. 41 (1969) 226.
- Nyssen, G. A. and Margerum, D. W. Inorg. Chem. 9 (1970) 1814.
- Larsen, N. R. and Jensen, A. To be published.

Received May 14, 1973.