$\begin{array}{c} \textit{Table 5.} \; \text{Enthalpies of disproportionation} \\ 2AMg\text{Cl}_3(\text{s}) = A_2Mg\text{Cl}_4(\text{s}) + Mg\text{Cl}_2(\text{s}), \; (\text{estimated} \\ \text{uncertainties} \; \; \pm \; 1 \; \; \text{kcal}). \end{array}$

Reaction	ΔH_{700}	△H _{298.15}	
	$kcal mol^{-1}$	keal mol ⁻¹	
$2KMgCl_3(s) =$			
K ₂ MgCl ₄ (s)+			
MgCl ₂ (s)	+1.3	1.1	
$2RbMgCl_3(s) =$			
$Rb_2MgCl_4(s) +$			
MgCl ₂ (s)	+ 3.9	+1.3	
$2CsMgCl_s(s) =$			
Cs ₂ MgCl ₄ (s)+			
MgCl _s (s)	+10.0	+8.0	

considerably from the potassium to the cesium compound.

Acknowledgement. Thanks are due to Docent Fr. Grønvold for his kind permission to use the drop calorimeter.

- Grjotheim, K., Holm, J. L. and Røtnes, M. Acta Chem. Scand. 26 (1972) 3802.
- Markov, B. F. and Panchenko, I. D. Zh. Obshch. Khim. 35 (1955) 2083.
- Svedahl, G. M.Sc. Thesis, Institute of Inorganic Chemistry, The University of Trondheim, Dec. 1969.
- Kleppa, O. J. and McCarty, F. G. J. Phys. Chem. 70 (1966) 1249.
- Holm, J. L., Jenssen Holm, B., Rinnan, B. and Grønvold, F. J. Chem. Thermodynamics 5 (1973) 97.
- Dworkin, A. S. and Bredig, M. A. J. Phys. Chem. 64 (1960) 269.
- Kelley, K. K. Contributions to the Data on Theoretical Metallurgy, XIII, Bull. 584, U.S. Bur. Mines 1960.
- Holm, J. L. and Grønvold, F. Acta Chem. Scand. 27 (1973) 370.
- JANAF Thermochemical Tables, Clearinghouse, Springfield, Virginia 1972.

Received November 27, 1972.

Calculation of C=C and C-F Bond Lengths in CH₂=CH₂, CH₂=CHF, cis-CHF=CHF, and CH₂=CF₂

BØRGE BAK, CECILIA KIERKEGAARD, JAN PAPPAS* and STEEN SKAARUP

Chemical Laboratory V, The H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

Experimental observations of C=C and C-F bond lengths in ethylene and fluorinated ethylenes (Table 1) indicate decreasing lengths with progressing fluorination. Earlier "resonance" structures such

as $\overline{\mathrm{CH}_2}$ - $\mathrm{CH}=\overline{\mathrm{F}}$ would seem to connect increasing C=C length with decreasing C-F length. This communication reports results of ab initio calculations of the molecules of Table 1 in which the molecular energy was separately minimized with respect to the C=C and C-F bond(s) in that order, taking remaining geometrical parameters from Refs. 1-3. A relatively small, Gaussian basis set 4 (s,p=7,3 contracted to 4,2) was used. The set was tested to see how well the experimental carbon-carbon distances in ethane (r_z =1.532 Å), in ethylene (r_z =1.335 Å), and in acetylene (r_e =1.203 Å) were reproduced. The results (r_e) were 1.554, 1.314, and 1.188 Å, respectively. Obviously, to assign significance to what follows one must assume that somehow the molecules of Table 1 are more "related" than C_2H_4 , C_2H_4 , and C_2H_2 .

The results of Table 2 are a minor part of a more comprehensive investigation. To the best of our knowledge only one paper based on the experimental structure of $\mathrm{CH_2} = \mathrm{CHF}$ (Table 1) has appeared earlier. At the present level of approximation the calculated bond lengths of Table 2 show the same trends as the experiments. The computed gross atomic charges show that carbon in ethylene, when binding fluorine instead of hydrogen, donates ca. 0.6 e (~ 6.3965 (col. 1) -5.7818 (col. 2) ~ 6.3965 – 5.8433 (col. 3) $\sim 0.5(6.3965 - 5.2163)$ (col. 4)) to fluorine, the hydrogen gross electronic charges (not quoted) being practically constant (0.8 e). Unsubstituted C prac-

^{*} On leave of absence from the Department of Physics, University of Oslo, Oslo 3, Norway.

Table 1. Experimental geometric parameters of ethylene and three fluorinated ethylenes as taken from Refs. 1-3. Distances in A.

Molecule	$R_{C=C}^{a}$	R _{C-F} a	Reference	
$CH_2 = CH_2$	1.335 ± 0.003		1	
CH = CHF	1.329 ± 0.006	2		
CHF = CHF (cis)	1.324 ± 0.004	1.335 + 0.004	3	
$CH_2 = CF_2$	1.315 ± 0.002	1.325 ± 0.002	3	

^a Largely R_z parameters.

Table 2. Calculated equilibrium distances, σ - and π -overlap charges and σ - and π -gross atomic charges for $CH_2 = CH_2$, $C(2)H_2 = C(1)HF$, cis-C(2)HF = C(1)HF, and $C(2)H_2 = C(1)F_2$. Distances in Å, charges in units of electronic charge.

	$CH_2 = CH_2$	CH ₂ =CHF	cis-CHF=CHF	CH ₂ =CF,
C=C distance	1.315	1.306	1.305	1.300
σ-Overlap	0.6286	0.5404	0.3612	0.4205
π-Overlap	0.5300	0.5114	0.4974	0.4850
$\sigma + \pi$ -Overlap	1.1585	1.0518	0.8586	0.9055
$C(1)$, σ -gross	5.3965	4.7805	4.7798	4.2644
C(1), π-gross	1.0000	1.0013	1.0635	1.0019
$(\sigma + \pi)$ -Gross	6.3965	5.7818	5.8433	5.2163
$C(2)$, σ -gross	5.3965	5.4093	4.7798	5.3839
C(2), π-gross	1.0000	1.0639	1.0635	1.1342
$(\sigma + \pi)$ -Gross	6.3965	6.4732	5.8433	6.5103
C-F distance		1.370	1.357	1.350
σ-Overlap		0.4123	0.4216	0.4682
π-Overlap		0.0115	0.0102	0.0300
$\sigma + \pi$ -Overlap		0.4238	0.4318	0.4982
F, σ -gross		7.4789	7.4576	7.4530
F, π-gross		1.9348	1.9365	1.9320
$(\sigma + \pi)$ -Gross		9.4137	9.3941	9.3850

tically retains its gross charge (6.3965 compared to 6.4732 and 6.5103). The role of fluorine as a donor to the "conjugated" π -system is rather modest (2.00 – 1.93 = 0.07 e). If the overlap charges of the C=C and C-F bonds were the main factors determining bond lengths our calculations would be contradictory. However, other factors may probably be important emerging, perhaps, when a larger basis set is applied.

Acknowledgements. We are indebted to the Danish computing centre NEUCC for access to their IBM 360/75 computer and to Helge Johansen, Chem. Lab. IV of this institute for helpful advice.

- 1. Kuchitsu, K. J. Chem. Phys. 44 (1966) 906.
- Lide, D. R. and Christensen, D. Spectrochim. Acta 17 (1961) 665.
- Acta 17 (1961) 665.
 3. Laurie, V. W. and Pence, D. T. J. Chem. Phys. 38 (1963) 2693.
- 4. Roos, B. and Siegbahn, P. Theor. Chim. Acta 17 (1970) 209.
- 5. Kuchitsu, K. J. Chem. Phys. 49 (1968) 4456.
- Fast, H. and Welsh, H. L. J. Mol. Spectry. 41 (1972) 203.
- Pappas, J. A Quantum Mechanical Study of Variations in the Geometry of Organic Molecules by Fluorine Substitution, University of Oslo, Dept. of Physics, Thesis 1972 (in Norwegian).
- Meza, S. and Wahlgren, U. Theor. Chim. Acta 21 (1971) 323.

Received December 12, 1972.

Acta Chem. Scand. 27 (1973) No. 1