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Although exeptions occur,!»? the majority
of work considering configuration/con-
formation in substituted or unsubstituted
1,3,2-dioxaphosphorinan-2-ones shows that
the geometrical arrangement which gives
the thermodynamically most stable mole-
cule, is a chair-like structure, presumably
flattened at the phosphorus end of the
ring.?”? The stereochemistry around the
phosphorus atom, that is, whether the 2-
substituent is axially or equatorially
oriented, is, however, open to question. In
cases where crystal structures have been
determined, the P=0 bond is uniformly
oriented equatorially. This need not be the
situation in solution. Generally, an equi-
librium between two conformers, having
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the P=0 bond axial and equatorial, re-
spectively, should be considered, i.e., for
56,5-dimethyl-1,3,2-dioxaphosphosphorinan-
2-ones:
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The potential of lanthanide NMR shift
reagents for assignment of protons in
complex molecules is now well docu-
mented.? In principle, these applications are
based on the equation:

4v; = K(3cost ¢ — 1)R;™ (1)

where K is a constant, 4v; is the chemical
shift induced in proton H; on complexation
of the substrate with the shift reagent, R;
the distance between the proton H; and
the lanthanide in the complex, and p; the
angle between the vector R; and the
principal axis of the complex.

According to eqn. 1, the chemical shifts
induced in I on complexation at the
phosphoryl-oxygen will depend on the
relative contributions from conformers Ia
and Ib. Thus there is the possibility of ob-
taining information with respect to the
axial/equatorial preference of the P=0
bond in this type of compounds, as pro-
posed by Yee and Bentrude in an article
reporting the use of Eu(dpm) for simplify-
ing the NMR spectrum of trans-2-meth-
yl~5-°te'rt-butyl- 1,3,2-dioxaphosphorinan-2-
one.

On this background, the derivatives
listed in Table 1 have been prepared, and
their chemical shifts, »;, measured as a
function of mol fraction, z, of the shift
reagent Eu(fod);.!* In all experiments the
substrate concentration was kept constant
equal to 0.100 M.

The effect of adding Eu(fod); to CCl,
solutions of compounds Ia and Id is il-
lustrated in Fig. 1. As for the other deriv-
atives studied, there is a linear v/z-
dependence in the low concentration range
of the shift reagent. The v/z-slope in this
region of x can therefore be taken as a
quantitative measure for the changes in
chemical shifts caused by complexation
with Eu(fod),;. These slopes, the k-values,
are listed in Table 1, together with the
POCH coupling constants.

It is seen from Table 1 (but more clearly
from diagrams) that derivatives Ia—Ic
generate qualitatively very similar »/x-



2986 SHORT COMMUNICATIONS

Table 1. Eu(fod); NMR data ¢ for compounds Ja-Id and II.

k(Hz/mol fract. shift reagent) J(POCH,) J(POCHp)
Compound Solvent .
(CH,),[cH,)5| H, [ Hy | r |2=0]2=1]2=0]2=1
R=CH, CCl, 85 | 155 | 205 | 435 2.1 | 17 20 6 3
Ia CDCl, 55 115 145 295 2.0 15 19 8 3
R=CH,Ph CCl, 70 | 110 | 150 | 310 2.1 | 17 20 5 2
Ib CDCl, 50 | 100 | 130 | 250 1.9 | 15 19 7 3
R=Ph ccl, 110 190 220 600 2.7 17 20 6 3
Ic CDCl, 35 135 145 315 2.2 13 19 10 5
R=Cl CCl, 110 160 230 260 1.2 270 27 3 3
Id CDCl, 95 135 160 210 1.3 27¢ 27 3¢ 2
CCl, 160 230 340 770 2.3
1I
‘; A and B denote, respectively, the higfield and lowfield signals.
2=0.30.
¢ x=0.22.
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Fig. 1. v]z-plots (CCl,) for compounds Ia, Id, and II. a: high field methyl group. b: low field

methyl group. ¢: high field methylene proton. d: low field methylene proton.

Chemical shifts (Hz) are downfield from internal TMS, and were measured by means of a JEOL
JNM.-C-60H spectrometer operating at 60 MHz.
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plots. Tentatively this would mean that
the type of contributing conformers are the
same for these compounds. Considering
chair forms only, eqn. 1 applied to a
molecular model shows that a much
greater differentiation of the shifts induced
in the methylene protons on Eu(fod),
complexation is to be expected when the
P =0 bond is oriented axially as compared
to the alternative equatorial orientation.
More quantitatively, this differentiation
can be expressed by the ratio of the k-
values for the methylene protons, the r-
value, Table 1. On this basis, the obtained
results indicate that Iax is the inain
contributing conformer in derivatives Ia —
Ic. Additional support for this conclusion
is obtained when observing the Eu(fod),
induced shifts in 2,2-dimethyl-1,3-propane-
diol cyeclic sulfite (II), a compound for
which the axial preference of the SO-
oxygen seems to be established.™3 The
v/z-plot obtained for II, Fig. 1, is qualita-
tively similar to the plots for Ja—1Ic, an
observation which provides strong evidence
for analogous conformation in these two
classes of compounds.

The postulated axial preference of the
P=0 bond for Ta—1Ic is also consistent
with the relative large difference between
the wvicinal POCH coupling constants,
indicating the dominance of either Iax of
Ieq.

%Vhen changing the solvent from CCl, to
CDCl;, there is generally a decrease in the
r-value, indicating a displacement of the
conformational equilibrium towards Ieq.
Such a change in the conformer ratio
should be reflected in a convergence of the
POCH couplings, an expectation which is
born out, Table 1.

A comparison of the POCH coupling
constants for compounds Ja—Ic at =0
and x=1 shows that the addition of
Eu(fod); causes the difference between
them to increase. This trend is observed
in CCl, as well as in CDCl,;, and must be
interpreted in terms of a displacement of
the conformational equilibrium towards
Tax. This interpretation is strongly sup-
ported by the fact that the POCH coupling
constant for a 0.1 M solution of (CH;0),P =
O in CCl, is virtually unaffected by the
presence of Eu(fod)s.

The change in the coupling constants
above can therefore not be explained as a
result of a contact contribution caused by
complexation. Regardless of this somewhat
unfavourable result, that the addition of
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Eu(fod); to some extent distorts the
equilibrium under investigation, the con-
clusions considering the conformational
preference of the P=0 bond should still
be wvalid. The ability of Eu(fod), to in-
fluence the conformational equilibrium has
very recently been demonstrated for the
trans isomers of 2-R-5-tert-butyl-1,3,2-
dioxaphosphorinan-2-one (R=Ph, CH,)."

The very different POCH couplings
found for Id indicate the presence of a
single conformer. This conclusion is further
supported by the invariance of these cou-
pling constants on changing the solvent from
CCl; to CDCl; or on adding Eu(fod), in
either of these solvents. On the other hand,
the »/x-curves in CCl, show that the con-
tribution from Iax cannot be significant.
Consequently, as fas as only chair forms
are considered, the conformation of Id
must be a chair with the P=0 bond
equatorial.
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