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Molecular Vibrations in Nonsymmorphic Crystals

I. Symmetry Coordinates for Pmn2, (C,,’)
0.S. BORGEN, D. FREMSTAD, B. MESTVEDT and 9. RA
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N-7034 Trondheim, Norway

The use of little-group theory and multiplier representations in
deriving irreducible crystal amplitude subspaces is briefly discussed.
Pmn2, symmetry coordinates are reported for all wave vectors the
groups of which have the set of translations as a proper subgroup.
External symmetry coordinates for all free molecules of C,, symmetry
are included as a special case.

In the last few years spectroscopists =2 and crystallographers 3 alike have
expressed an increasing interest in the dynamics of molecular crystals.
Despite the rapid growth of the amount of research devoted to this field,
several problems merit further investigation. For instance, the usual classifica-
tion of nuclear motions in terms of supposedly noninteracting external and
internal modes constitutes a source of error of essentially unknown magnitude.
The conditions for a separate treatment of internal and external modes to
be adequate are undoubtedly met in many cases. Nevertheless, clear evidence
to the contrary exists for some, inorganic 4 as well as organic,5 systems. In
particular, the recent “atomic crystal” type treatment given to naphthalene
by Pawley and Cyvin % clearly demonstrates the hazards of considering lattice
phonons to be made up by rigid-body motion alone. It seems safe to assert
that similar model calculations are called for in a number of other cases
exhibiting low-lying “internal” bands. Whenever feasible symmetry reduc-
tion of secular equations is the obvious first step in an assessment study of the
extent to which rigid-body phonons acquire a clothing of [renormalized]
internal modes, and vice versa. This step requires some preparation which,
fortunately, can be arranged to apply equally well to all crystals shearing
a common space group designation. This paper serves to initiate a series
devoted to the reporting of complete sets of symmetry coordinates for a
collection of nonsymmorphic space groups. The collection contains selected
cases covering numerous molecular crystals for which, to our knowledge,
symmetry coordinates are not available in the literature. The outline of the
present paper is as follows. First, we describe the adopted naming conventions
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in sufficient detail to save repeated specifications in future works, listing also
some pertinent group-theoretical concepts brought in to reinforce those
already underlying the symmetry analysis of a gaseous molecule. Second,
we present the results obtained for Pmn2,, and finally we indicate how to
adapt these and forthcoming results to alternative ways of specifying basis
vectors of irreducible amplitude subspaces.

SALIENT CONCEPTS AND NAMING CONVENTIONS

Consider a crystal lattice with fundamental periods {a,; r=1,3}, and let
T denote the infinite and discrete translational subgroup of the space group
in question, . A finite group of translations, TV, pertaining to a cyclic lattice
containing N?® unit cells, can be obtained as the image of 7" under a homo-

morphic mapping with kernel {ZmrNa,, (my, my, my)eIxIxI} where I

designates the set of integers. GN stands for the corresponding finite space
group. Henceforth, when writing G and T, G¥ and T* are understood. Further-
more, with n referring to the number of atoms in a unit cell the N(=3nN3)-
dimensional amplitude space of the cyclic structure, H, can be endowed with
a basis set {c(lxa); I=1N3 x=1n; a=1,3} where c(lxx) signifies a unit
massweighted displacement of the atom at x(Ix) in the cartesian a-direction;
and where, for instance, ¢(111) in component form reads

¢(111) = (1,0,0,........... ,0) (1)
Regarding {c(lxx)} as a fiducial frame, a unitary and linear space group
operator on H, [S|v(S)+ x(m)], is defined by
e B),[S{V(S) + x(m)]e(lxa)) = 1, 00xSpa
X(LK) = Sx(Ix) + v(S) + x(m) (2)

where S is a proper or improper rotation belonging to the point group of G,
v(8S) is either a nonprimitive translation or the null vector, and where x(m) € T.
As is easy to verify, eqn. (2) makes {[S|v(S)+X(m)]} form a homomorphic
mapping of G. Consequently {c(lx«)} carries a (reducible) representation of
G. With an appropriate ordering of the ¢(lxx)’s each N x N representation
matrix is a monomial supermatrix form the nonvanishing elements of which
are all equal and coincident with the 3 x 3 matrix realization of some S in
(the point group isomorphic to) G/T. In simplifying the dynamics it is highly
useful to give explicit recognition to translational invariance by introducing
the alternative basis set

U{E(kxx); »=1,n; «=1,3} where
ke {k;}

E(kxx) = N-372% exp [ik - X(I)]e(loax) (3)
4
and where {k} constitutes a grid in reciprocal space, viz.
3
k, =N 3 sb, (4)
q=1
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In eqn. (4) s, is an integer with the property that 0 <s, <N. For convenience
the reciprocity relation is given by

<a,, b> = d,427; p,q = 1,2,3 (5)

As is well known eqn. (3) describes a unitary transformation. Moreover it
readily follows from eqn. (3) that, in terms of the E(kxa)’s, the action of a
space group operator [S|v(S)+ X(m)] is that of mapping the subspace spanned
by {E(kxx); fized k} on to the one spanned by {E(Skx«)}. The mapping is
effected by the 3n x 3n unitary matrix

r(k§[SlV(S) + x(m)])aﬂmt’ = 5x’F~‘(H;S)Saﬂ exp [ik- {[S| v(S) +
+ X(m)J'X(x) — X(')}] (6)

where, in conformity with the notation of Maradudin and Vosko,® F-1(x;S)
denotes the type of atom deposited at a x-site. Note that I'(k) is periodic
in k-space with periods b,. Under pure translations eqn. 6 implies that
{E(kxa); fixed k} transforms as a multiple of the irreducible representation
[1{x(m)] - exp [ —ik-X(m)] of the abelian T. With the notation {y«(m)}=
{exp [—ik-X(m)]} we can, bearing in mind the normality of T as a subgroup
of G, define a little group Gy as that set of elements in G which leaves {yx(m)}
invariant under conjugation. For [S|v(S)+X(m)] to be in G¢ one must have

Sk-k=K (M

where K is a general lattice vector in reciprocal space. Accordingly, T € G.
The orbit of {yxm)} is generated by all elements in G whose rotational operator
parts do not comply with eqn. (7). The assembly of all unique wave vectors
generated by {S} from k, the star of k, specifies the orbit. In separating
the cyclic lattice amplitude space into irreducible subspaces, one subspace
per orbit, it is convenient to regard each irreducible representation of G as
induced by an allowable representation of Gg. On the practical level this is
tantamount to first grouping {k.} into stars, then selecting one k per star,
and, finally, decomposing each of the manifolds spanned by a selected {E(kxa)}
set into carrier spaces for irreducible representations of the associated G.
In the following we focus attention on special k values, i.e. wave vectors
the Gi’s of which are not exhausted by T. In the past, the task of actually
finding the appropriate subspaces in a {E(kxa)} space has been considered
a difficult problem if the crystal be nonsymmorphic. Even the quite recent
and highly prominent book by Jansen and Boon ? recommends Herring’s
method,® which is based on Gg/Tg and engendering procedures, in cases where
Gx#+Py®T. In the foregoing sentence Ty stands for the subgroup of transla-
tions for which exp[—ik-X(m)]=1 while, in adherence to common practice,
Py is the point group (isomorphic to) Gi/T. However, taking refuge in multiplier
representations one can always proceed wvia Py, thereby maintaining the
simplicity of previously reserved cases wherein G¢x=Py®T. The theory of
multiplier (weighted) representations has been summarized briefly, yet with
great clarity, by Liubarskii.® The application of this tool in crystal dynamics
has been expounded in detail by Maradudin and Vosko ¢ for an infinite lattice,
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and by two of the present authors 1° for a finite (cyclic) lattice. Suffice it here
merely to note that if each coset in the expansion

= {[S/v(S)IT}; Sk —k = K (8)
be mapped on one matrix I'(S,) according to
I'(Sy) = I(k; [S;]v(Sy)]) exp [ik - v(S)] (9)
then, as follows by direct computation, these matrices multiply according to
ﬁ<sf>f<sy) = P(S{S¢) exp [—iK,- V(Se)]
=87k — k (10)

and so {F( )} furnlshes a multiplier representation of Py with exp[—iK;

v(Sr)] as the required function on Py x Py to the complex numbers. Ortho-
gonality properties, and thereby projection operator techniques, carry over
from ordinary representation theory to multiplier representation formalism
without essential modifications.®~10 Therefore, the construction of a similarity

transformation which decomposes {IA’(St)} into irreducible multiplier represen-
tations of Py does not pose a difficult problem. It follows from eqns. (6) and
(9) that the very same similarity transformation turns the linear manifold
spanned by {I'(k;[S;|v(S;) +X(m)]}; [S¢|v(S;)+x(m)]€ Gk into a direct sum of
carrier spaces for irreducible representations (in the usual sense) of Gy. Thus,
the nonsymmorphic cases can be handled in a way that comes close to the
treatment normally given to symmorphic crystals while using Gx=Pc@T.
This, in bare outline, is the crux of the multiplier approach underlying the
results to be presented in the ensuing section as well as in future papers. It
would appear from a recent review article and references contained therein 1
that awareness of the method is not, as yet, sufficiently widespread.

In closing this section we add to the already listed naming conventions by

writing I'(S,) as A
r (Sf)aﬂmc' = 5x'F“(x:Sf)Sfonﬂdx(Sf)
dy(Sy) = exp [ik-{X(x) — SX(x')}] (11)

When preparing a table of symmetry coordinates intended to cover all crystals
belonging to a given space group, it proves expedient to deviate slightly from
the conventional x-labeling of the unit cell contents. It is always possible to
group the »’s so that F(x;S) is in the same set as x», whatever the value of x.
With each space group is associated a finite number of position types as is well
known. For obvious reason it suffices to carry out the symmetry analysis once
for each site set of a specific type separately. Accordingly, we introduce d;®
(Se), R, I'0, and {E/® (ka)}. Here d;0(S;)=dx(S,) and R/®=X(x) for
referrmg to the jte member of some I- type position set. I'®® is, for fixed k,
the subspace spanned by {E;® (k«)}. The latter symbol is short for a subset
selected from {E(kx«)} by letting x» traverse all sites in an r-type set. A
symmetry adapted orthonormal basis in a I'® will be denoted {ES 0(k)},
while {ES§ (k)} refers to U/{ES ®(k)}. Furthermore, we will adhere to
Kovalev’s numbenng convention i%r wave vectors and group operators, while
using also his tabulated matrix representation.!?
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SPACE GROUP Pmn2, (C,,)

This space group belongs to the orthorhombic system. It is of class mm2
(C,,) and has a vector group which is of the simple Bravais type. The funda-
mental periods in configuration space are

al = (2lt’xs 0’ O)» a2 = (07 22ty, 0); as = (0) O’ 231-/2)

with triplets referring to a rectangular coordinate system. Similarly, the basic
vectors in reciprocal space can be taken as

b, = n(*t<71, 0, 0); by = #(0, 2t,77, 0); by = #(0, 0, 3t,7%)

G/T contains elements {S;, S, Sy4, S57}, S, denoting the identity operation and

S, = 2[001], Sy = 2[100], S,, = 2[010],
1 0 0 I 00 1 0
$,={0 T 0}, S,=140 1 0} S,,=10
1
The corresponding nonprimitive translations are
V(Sy) = (tx, 0, 3,); V(Sge) = (0, 0, 0); V(Sy;) = v(S,)

that is

QIO
(=3

0 01 0 0 1 0

There are two sets of symmetry equivalent positions, a general set comprising
four sites

R, = (x,y,2) R,V = (% +ty,7,2 +3t,)
Rs(l) = (X +1tx,:l7:Z +stz)$ R4(1) = (i’y’z)

and a special set consisting of two members

R,® = (0,y,z) R, = (1x,7,2 +3t,)
Application of group operations generate mappings
R,® R,® R,® R,® R,® R,®

[S4lV(Sg)]—> ;
R,® R,® R® R,® R,® R,®

R,® R® R,® R,® R,® R,®

[S261V(Sge)]—> H
R," R,® R,® R,® R,® R,®

R, R® R® R® R,® R®

[Sa7] V(Sgq)] - ;
R® R R,® R® R,® R®

Having recorded some general information to be tacitly used in the following we
now turn to amplitude subspaces labeled by k-vectors the little-groups of
which are not merely T.
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Symmetry at Ky = psby + paby = 7(0, 576,753, 77)
Pkl = le/T = {sv S26}
I® = 67, + 67y I'® = 47, + 24,
'(11{) (Sg) =1 for all r,j in question.
e

obtained symmetry adapted wave combinations are for a set of special
positions

72 (jo)
11

12
13

—-—0 O
SO

= (ES,®(K,)}
21
22
23

[=R =N
OO OO0
-0 OO0
SO0 OO
[=R=N

As for the general set we have found

l‘?l "?1 a';l "?1 5'?1 c'5'!1 I;a "?a 8'?1 "?: B‘Fz G'Fa (jor)

0 o¥2 o o o o o0o¥Y2 o o o 1
2
_\/:g 0 0 o0 0 0 ﬁg 0 0o o o0 o 12
0 1/% 0 0 0 0 o0 _\{_g 0 0o o o 13
0 0 0 0 0 .\/_g 0 0 0 0 o _‘/_g 21
0 0 0 l/_g o 0 0 0 o0 ‘_fg 0o o0 22
0 0 o _‘/_7‘23 0 0 o0 0 o Lg 0 23
_ = {Esp(l)(kl)}
0 0 0 o0 o0 Lg 0 0 0 0 0 [% 31
0 0 0 ‘/g 0o 0 0 0 o ‘/g 0 o0 32
o 0o o oY2 o o o 0o Y2 ¢ 33
2 2

0 o Lg 0 0 0 0 o0 .‘@2_ 0 o0 o 41
Lg 0 0 0 0 0 Lg 0 0 o0 0 42
0 L’% 0 o o o oY2 o o o 43
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The basis vectors have been written columnwise on component form with
respect to {E®(k,«)}. The columns headed by (j«) indicate the sequence of
the components with respect to site number and cartesian incremental coor-
dinates. The same ordering being understood, such columns will be omitted
when listing symmetry coordinates for other wave vectors.

Symmetry at Ky = §b; + by + ptsby = (31626, 755,70,
Py, = {8,, Sy}
I'® = 67, + 67y, I'® = 37, + 34,
dO=d®=d®=1; d®=d®=d,®=—1
Although Py, coincides with Py, note that the reducible representations differ.

{ES, (k,)} can be obtained from {ES® (k,)} provided the heading is

repla,ced by:

12 34 42 52 62 14 24 32 42 52 6.4
"'1"17'172"27'27'27272"'1"1”'1

In the case of {ES,® (k,)} we use likewise {ES® (k;)} with a renewed
heading, viz.

1z 24 32 12 32
1'1 T P9 Tg Te Ty

Symanetry at ka = uyby + pgbg = 7(uy 't 0, pgt,7).
= {Sl’ s27}
I‘<1) = 67, + 675 I'® = 3¢, + 34,
d,®=d,®=d,® = p*; d,® = d® = d,® = y=e Twtu
Defining o, = {2(1 + cos (n[y, +u3])) ™ we can write for the complex valued

symmetry coordinates (see p. 2584)
and

I,i‘.x 2,’41 3;1 l?x ’.;2 8142
oy (14+n*) 0 0 o_(1—n*) 0 0
0 o_(1—n*) 0 0 o (14 n*) 0

0 0 oy (1+7%) 0 0 o_(1—n*)

= (ES,")(k,)}

+(14+1n) 0 0 o_(l—7n) 0 0
0 o_(1—179) 0 0 o, (1+7) 0

0 0 o (1+1n) 0 0 o_(1—1n)

Symmetry at Ky = pyby + by + pgby = mw(uy "t F26,70, pst,7).
This case does not in any way differ from the precedmg one.
Symmetry at kg = pby = 7(0, 0, 1,3t,71)

Pk, = {Sp S4’ Sze’ S27}
F(l) = 3’;’1 + 37"2 + 3713 + 37:4
I'® = 2%, 4+ 7, + 273 + 7,
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Aib+$+b 0 0
0 (s—1)70 0
0 0 (s4+1) T2
0 0 0
0 0 0
0 0 0
(b41)*o 0 0
0 (b—1)"0 0
0 0 (b+p*o
0 0 0
0 0 0
0 0 0
Ty T Ty
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dl(l) (SA) = d4(1) (84) = dl(l) (Szv) = d4(l) (Szv) = d1(2) (S4) = d1(2) (Sz7)
=n* d (Sy) = d3(l) (S4) =d,® (827) = ds(l) (Sg7) = da(z) (S4)
=dy® (Syy) = 1 = €7y d D (S5) = dy® (Spe) = dy® (See)

=d4(1) (S26) = d1(2) (Sze) = dz(z) (st) =1

With the adjusted definition o, ={2(2+ 2 cos (muy))}}~! we obtain this time
for the general set (see p. 2586)

and with 0. ={2(1 +cos (mu))*}~! for the special set

12, 2, 12, 17, 22, 12,
0 0 o_(1—n*) 0 0 o (1+ 7%
o_(1—n*) 0 0 o (1+7%) 0
o (14 9%) 0 0 o_(1—n%*) 0
= (ES, (k)
0 0 o_(1—1n) 0 0 o (l+7)
o(l-n) 0 0 o 1+m 0
0 1+ 1) 0 0 a_(1—17) 0

Symmetry at Kyg = 3by + by = (0, §26,71, 3%,77).
Here the ky-results carry over without modlﬁcatlon
Symmetry at kg = b, + by = (317, 0, py3t,71).

Pku = {81: S4 S16 Sar}
I'Y = 67; I'® = 3+, where + is two-dimensional

d,® (Sy) = d® (8y) = d,P (Sy) = 5 = ie -7

d® (Sy) = da® (84) = d® (S4) = — n*
d @ ( ) d4(1) (Sze) = d1(2) (st> =1
(1) (Sz da(l) (Sze) = dz(g) (st) = -1
d;® (Sp) = d® (Syy) = d,® (Syy) = — 77
dy® (Sgp) = dg® (Syy) = dy® (Sy7) = — 1*

Leaving unaltered the meaning of ¢, the symmetry coordinates can be taken as
shown on p. 2587 and

1#(1) *#(1) 7(1) 1#(a) #(a) ()

o (1—in) 0 0 o (T+in) 0 0

0 gy (1—in) 0 0 o (1—in) 0

0 0 o_(1+in) 0 0 a_(1+in)

= {(ES,*k,,)}

o (1+in*) 0 0 o (1+in*) 0 0

0 g (1+in*) 0 0 o (1—-in*) _O

0 0 o_(1—1in*) 0 0 o_(1+in*)
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0.

2586

() visa =

(s—1)F0 0 0 0 ({li—1)70 0 (sl +1)70 0 0 0 (sli+D) 0 0
0 (sl +1)70 0 0 0 (sk+1) 0 0 (4li—1)Fo 0 0 0 (sl—1)70
0 0 (l+1)F0 (l+1)70 0 0 0 0 (sh—D2 U—-Dto 0 0
(L+1)to 0 0 0 (k—1)0 0 (u—1)o 0 0 0 (H+pto 0
0 (u—1)o 0 0 0 (+1)to 0 (L+pto 0 0 0 (b—1)"0
0 0 (U+1)to (b—1)"2 0 0 0 0 (-2 (+DT2 0 0
(h—1)*o ) 0 0 (U—1)2 0 (U+1)"o 0 0 0 (t+1)to 0
0 (B+1)0 0 0 0 (H+1)to 0 (u—-1)*o 0 0 0 (L—1)"2
0 0 (b+Dto (U+1)"2 0 0 0 0 (u—1)yo (u—Dto 0 0
(si+1)To 0 0 ) (lt—1)"2 0 (sl—1)"2 0 0 0 (sl +1)F0 0
0 (x4 —1)"2 0 0 0 (sl+1)Fo 0 (sh+1)T0 0 0 0 (s —1)"0
0 0 (s+DFo (—D72 0 0 0 0 (h—1)"2 (U+Dto 0 0
Vi Yy e g S Sy e 2 i Tee Te T4
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"e08ds J0LLIBD OU) JO 5109004 SI8BQ OU3 [0qe] ((3) (1), S10%08IqQ ur sxedejuy .::&?vamm: =

0 0 0 (b1+1)"2 0 0 (br41)"0 0 0 0 0 0

0 0 0 0 (ur—p)to 0 0 (ix—1)*o 0 0 0 0

0 0 0 0 0 (br+1)to 0 0 (lr—1)to 0 0 0

0 0 0 (sli1+1)0 o . 0 (slr—1)"0 0 0 0 0 0

0 0 0 0 (sli—1)*o 0 0 (xli+1)t0 0 0 0 0

0 0 0 0 0 (sl1+1)to0 0 0 (sbi+1)to 0 0 0
(xlir+1)"0 0 0 0 0 0 0 0 0 (xli—1)"0 0 0

0 (sl +D™* 0 0 0 0 0 0 0 0 i+1)to o

0 00 (Wa+pto 0 0 0 0 0 0 0 0 (slr+1)to
(br+1)"0 0 0 0 0 0 0 0 0 (br+1)"0 0 0

0 (x—1)*o 0 0 0 0 0 0 0 0 (li—1)*o 0

0 0 (br+1)to 0 0 0 0 0 0 0 0 (fr—1)*to

A:w. E..wa ?v%v (s vwn Auku ?Vw- (x Vm‘- (x vmu (x C.- (r vm‘u (r C.« (t vm‘n
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Symmetry at Ky; = by + $b, + pgby = m(F 17, $24,78, pt,7).
In this case the k4 I" decompositions and wave combinations apply.
Connection with free molecule symmetry coordinates. In closing this section
it seems worth mentioning that the {ES ® (k,;)} tables also serve as suitable
(external) symmetry coordinates for all free molecules with symmetry mm2

( 20)‘

CHOICE OF MOLECULAR LATTICE BASIS

From a group theoretical viewpoint there is no essential distinction
between “atomic’” and “molecular” crystals. The atomic mode of description
admits symmetry information to be condensed in finite tables, and is in our
opinion the better choice for tabulation purposes. On the other hand, given a
crystal and evidence to the effect that chemically characteristic clusters of
atoms display a considerable measure of independence, then a molecule
oriented depiction of crystal space events would seem warranted. For the
sake of future convenience in relating the solid state behaviour of molecules
to their gaseous performances we list the following formulae and notation
rules. Let n, be the number of molecules in a unit cell and n 4 the number

of atoms in the qt* molecule, 7.e. n= Z nd. Let furthermore x, be the 3n -
=5

tuple specifying massweighted cartesmn displacements of the atoms of the
qt* molecule in the crystal fixed frame, s i be a (3n,3—6)-tuple forming a
suitable set of internal coordinates, and s be a 6-tuple making up the mass-
weighted Eckart coordinates of the qt* molecule. Then, whatever frame be
used in specifying s ! and s, we are at liberty to write

s i
X, = Ass, s, = [sfe] (12)

where the rightmost six columns of the 3n,dx 3n,9 matrix Ad relate to the
Eckart coordinates. We now change lattice basis from {E(kxa)} to {E_(kqgs)},
the latter being defined by

E, (kgs) =

Sna

z A, a E(ki) (13)

where i refers to xa pairs of molecule q. If Ek be a 3n-coordinate-tuple re-
lating to {E(k#x«); fized k} and E_¥ the one pertaining to {E_(kqs); fized Kk}
then

Ex=AE_ (14)
with the 3nx 3n A being determined in terms of {Ad} to within the latitude
associated with alternative ordering of basis vectors in the two sets involved.
Decreeing that the matrix ES(k) be defined according to

3n
ES, (k) = > ES(k),, E(ki) (15)
i=1

Acta Chem. Scand. 26 (1972) No. 7
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then the 3n-coordinate-tuple ESk relative to {ES,(Kk); fized k} is obtainable
from
Ek = ES(k)ESk (16)

while ES¥ and E_k are connected through
ESk = ES(k)* A E_ X (17)

If G¢=T, then obviously ES(k) can be identified with 1. It is clear that rigid-
body translations, or infinitesimal rotations, of molecules comprising a lattice
constitute an amplitude subspace which is stable under G. Accordingly, the
basis vectors of the two manifolds involved can be enumerated so as to yield
an ES(k)™! A composed of three blocks along the diagonal, one associated with
symmetrized lattice waves of internal molecular deformation, the others with
wave propagation of rigid-body displacements. In other words, internal
motion, rigid-body translations, and rigid-body and practically commuting
rotations can be symmetry analyzed separately.’® Apart from this, no special
structure can generally be attributed to ES(k)~* A. If we denote by D_(k)
the 3n x 3n Fourier transformed dynamical matrix relative to {E_(kqs); fized
k} and by D(k) its {E(ksx«); fized k}-basis counterpart, we have

D_(k) = A~ D(k) A (18)

The symmetry transform, i.e. the dynamical matrix relative to {ES (k); fized
k}, reads
DS(k) = ES(k)~* D(k) ES(k) (19)
or
DS(k) = ES(k)~* A D_ (k) A~* ES(k) (20)

A final comment on ES(k), A4, and A is in order. For practical reasons
we consider a nondiagonal metric tensor to be a nuisance in a Brillouin zone
treatment if n be large. Accordingly, we shall henceforth assume ES(k), A, and
A to be unitary unless stated otherwise. This convention violates somewhat the
normal practice of molecular spectroscopy. To take into account the character-
istic features of molecular structure it is customary in dealing with gaseous
molecules to adopt coordinates frequently involving a nondiagonal metric
tensor the inverse of which is invariably known as Wilson’s G matrix. We would
be in remiss not to mention that similar choices of coordinates have been
advocated also for molecular crystals.*-16 However, although occasionally
imposing reference states for internal deformations which are difficult to
visualize, our restriction on A¢ and A in no way precludes efficient use of
data on free molecules in constructing crystal force fields.
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