- Schmidt, K., Francis, G. W. and Liaaen-Jensen, S. Acta Chem. Scand. 25 (1971) 2476.
- Liaaen-Jensen, S. In Isler, O. Carotenoids, Birkhäuser, Basel 1971, Chapter 3.
- Hertzberg, S. and Liaaen-Jensen, S. Phytochemistry 8 (1969) 1281.
- Liaaen-Jensen, S. and Jensen, A. In San Pietro, A. Methods Enzymol. 23 (1971) 586.
- Kjøsen, H., Arpin, N. and Liaaen-Jensen,
 Acta Chem. Scand. In press.
- 14. Pifferi, P. G. Anal. Chem. 37 (1965) 925.
- 15. Adachi, S. J. Chromatogr. 17 (1965) 295.

Received May 12, 1972.

Bacterial Carotenoids XXXIX* C₅₀-Carotenoids 10.** Bacterioruberin Mono- and Diglucoside

N. ARPIN, a J.-L. FIASSON a and S. LIAAEN-JENSEN b

a Département de Biologie Végétale, Service de Phytochimie et Phytophysiologie, Université de Lyon, 69 Villeurbanne, France

^b Organic Chemistry Laboratories, Norwegian Institute of Technology, University of Trondheim, Trondheim, Norway

Bacterioruberin, the characteristic carotenoid of halophilic bacteria has been assigned the C₅₀-tetrol structure 1.2,3 We now report the first isolation of bacterioruberin monoglycoside (2) and diglycoside (3).

A moderately halophilic bacterium strain BOS 66 from glacial mud (collection Gounot) was examined. From the biological material collected from a total of 1500 Petri dishes 76 mg carotenoid was obtained, constituting 0.05% of the extracted cell residue. Bacterioruberin (1) comprised 33%, the monoglycoside 2 30% and the diglycoside 3 35% of the total carotenoid.

Bacterioruberin (1) was identified from its electronic spectrum ($\lambda_{\rm max}$ 370, 387, 443, 496, and 530 nm, % III/II³=54 in acetone) and mass spectrum (m/e 740=M corresponding to $C_{50}H_{76}O_4$, M-18, M-18-18, M-18-18, M-18, M-58, M-18-18-18, M-92, M-106, M-58-58, M-106-18, M-106-18-18 etc.) and co-chromatography tests with authentic 1.

The monoglycoside 2 exhibited the same electronic spectrum as bacterioruberin (1) and was more strongly adsorbed. The IRspectrum (KBr) suggested its glycosidic nature ($\nu_{\rm max}$ 3400, 1075 and 1040 (broad), 955, 900 cm⁻¹; only diagnostically important bands are cited). The mass spectra of the monoglycoside $(m/e \ 902 = M \ corresponding to \ C_{50}H_{75}O_4(C_6H_{11}O_5), \ M-58, M-92, \ M-106, \ M-158, \ M-162)$ the acetylation product and of formed under $\operatorname{standard}$ acetylation conditions $(m/e \ 1070 = M \ corresponding)$ to $C_{50}H_{75}O_4C_6H_{11}O(OCOCH_3)_4$, M-58, M-60, M-92, M-106, M-158, 331, 211, 169, 115, 109, 105, 91) and the tri(trimethylsilyl) ether 6 thereof $(m/e \ 1286 = M$ corresponding to $C_{50}H_{75}(OSiCH_3)_3OC_6H_{11}O-(OCOCH_3)_4$, M-92, M-106, M-131, 331, 169, 131 (100 %), 115, 109, 105, 91) revealed the presence of four hydroxy groups accessible for acetylation and three tertiary hydroxy groups in 2. The fragmentation pattern of the acetylated products 5 and 6 further revealed the presence of a glycosidically bound hexose (m/e 331, 211,

$$\begin{array}{lll} 1 & \mathbf{R_1} \! = \! \mathbf{R_2} \! = \! \mathbf{R_3} \! = \! \mathbf{R_4} \! = \! \mathbf{H} \\ 2 & \mathbf{R_2} \! = \! \mathbf{R_3} \! = \! \mathbf{R_4} \! = \! \mathbf{H}, & \mathbf{R_1} \! = \! \mathbf{hexosyl} \\ 2a & \mathbf{R_1} \! = \! \mathbf{glucosyl} \\ 2b & \mathbf{R_1} \! = \! \mathbf{mannosyl} \\ 3 & \mathbf{R_2} \! = \! \mathbf{R_3} \! = \! \mathbf{H}, & \mathbf{R_1} \! = \! \mathbf{R_4} \! = \! \mathbf{hexosyl} \\ 4 & \mathbf{R_1} \! = \! \mathbf{R_2} \! = \! \mathbf{R_3} \! = \! \mathbf{R_4} \! = \! \mathbf{SiMe_3} \end{array}$$

^{*} No. XXXVIII Acta Chem. Scand. 26 (1972) 2524.

^{**} No. 9. Acta Chem. Scand. 26 (1972) 2524.

⁵ $R_2=R_3=R_4=H$, $R_1=$ tetraacetylhexosyl 6 $R_2=R_3=R_4=$ SiMe₃, $R_1=$ tetraacetylhexosyl

⁷ $R_2 = R_3 = H$, $R_1 = R_4 = tetraacetylhexosyl 8 <math>R_2 = R_3 = SiMe_3$, $R_1 = R_4 = tetraacetylhexosyl$

169, 115 and 109)4 in 2. Moreover, the chemical behaviour, electronic and mass spectra supported that the aglycone involved was bacterioruberin (1). Prominent peaks at M-58 for 2 and M-131 for 6, compatible with cleavage of the 1-single bond,2 are taken to support the location of the hexose unit in the extra C₅-unit of 2. The PMR-spectrum (CDCl₃) of the triol tetraacetate 5 [τ 8.80 (gem. Me); 8.02, 8.00, 7.98, 7.96 (in chain and acetate Me) $5.7(CH_2OAc)$, 6.0-4.5 (hexose methine H), 4.0-3.0 (olefinic H)] is consistent with structure 2 for the new glycoside. Glycoside hydrolysis 5 of the triol tetra-acetate 5 followed by paper chromatography of the resultant hexose revealed the presence of glucose (ca. 80 % of total) and mannose (ca. 20 % of total). The hexoside 2 is thus a mixed glycoside, a situation previously encountered for other carotenoid glycosides, cf. myxo-xanthophyll 6 and oscillaxanthin.7 The glucoside 2a could not be separated from the mannoside 2b even as acetylated or silvlated derivatives in any systems tried in agreement with previous experience.6,7

The diglycoside 3 exhibited the same electronic spectrum as bacterioruberin (1) and was considerably more strongly adsorbed that 1 and 2. The IR-spectrum (KBr) suggested its glycosidic nature ($\nu_{\rm max}$ 3400, 1110 – 1035 (broad) and 960 cm⁻¹) and the PMR-spectrum (CDCl₃) of the acetylated product 7 [\tau 8.80 (8 gem.Me); 8.02, 8.00, 7.98 and 7.96 (14 Me, in-chain +acetate Me); 5.82(CH₂OAc); 4.8-6.0 (hexose methine H) and 4.0-3.0 (olefinic H)] was compatible with an octaacetate and revealed the dihexoside nature of 3. The mass spectra of 7 ($\rm M_{calc}\!=\!1400$) or the silylated acetate 8 ($\rm M_{calc}\!=\!1656$) showed no molecular ions, but strong m/e 331 peaks. 8 exhibited fragment ions above m/e 1500. Sugar hydrolysis of 7 gave glucose and mannose in approximately the same proportion as for 2 above, demonstrating a mixed diglycoside. A sharp doublet at τ 5.44 (J = 9.5 cps, ax.-ax.) for the octaacetate 7 is compatible with the anomeric proton of a β -D-glucoside. By analogy with the monoglycoside 2 the two hexoses are most likely symmetrically bound to the aglycone as in 3. A disaccharide formulation is considered less likely from the PMR and mass spectrometric evidence obtained.

Both carotenoid glucosides and mannosides are previously reported. Naturally occurring carotenoid glycosides have recently been reviewed 9 and further C_{50} -glycosides have subsequently been described. 10

Experimental. Strain BOS 66 was cultivated on 1500 Petri dishes in the medium of Lochhead ¹¹ (5 % NaCl); yield 146 g wet cells. Extraction with acetone, then with methanol and finally with dimethyl sulphoxide provided 76 mg carotenoids (0.053 % of the extracted residue). Lipids were removed by repeated precipitation from cold acetone. Additional lipids necessitated standard ¹² saponification with 5 % KOH in methanol. Chromatography twice on acetylated polyamide (Machery Nagel Polyamid 6-AC) recovered 33 mg carotenoids.

Bacterioruberin (1), eluted with 3 % methanol in benzene; $R_F = 0.43$ on Schleicher & Schüll No. 287 paper, 20 % acetone in petroleum ether (S & S 287 20 % AP), was crystallized from chloroform-petroleum ether; yield ca. 6 mg.

The monoglycoside (2) required 5–6 % methanol in benzene for elution from acetylated polyamide, had $R_F = 0.03$ on TLC (silica gel G 50 % AP) and was crystallized from methanol-petroleum ether; yield ca. 6 mg.

The diglycoside (3) required 9 % methanol in benzene for elution from acetylated polyamide, exhibited $R_F = 0$ on TLC (silica gel G 50 % AP) and was crystallized from ethanol-petroleum ether; yield ca. 7 mg.

Spectra were recorded as specified elsewhere. ¹³ Samples for mass spectra were purified by TLC on silica gel G.

Acetylations and silylations were effected by standard procedures. 12 R_F -values of the derivatives were:

4~0.56 (S & S 287 0 % AP); 5~0.80 (S & S 287 20 % AP) and 0.51 (TLC silica gel 50 % AP); 6~0.46 (S & S 287 5 % AP) and 0.55 (TLC 30 % AP); 7~0.24 (S & S 287 20 % AP) and 0.57 (TLC 50 % AP); and 8~0.27 (S & S 287 15 % AP).

Glycoside hydrolysis was effected with ca. 4 mg carotenoid in methanol with 0.17 N HCl followed by hydrolysis of the resulting methyl glycoside with polystyrene sulphonic acid. 14 Paper chromatography of the reducing sugars was carried out in System 4 6 with glucose, galactose, and mannose as reference substances.

Results are given in the main text.

Acknowledgement. We thank Dr. A. M. Gounot, Service d'Ecologie bacterienne, Université de Lyon, for providing a pure culture of the strain used. Siv.ing. Helge Kjøsen kindly

assisted in obtaining PMR and mass spectra. N. A. was supported in Trondheim by a grant from Hoffmann-La Roche, Basel, to S.L.J.

- 1. Kelly, M. and Liaaen-Jensen, S. Acta Chem. Scand. 21 (1967) 2578.
- 2. Kelly, M., Norgård, S. and Liaaen-Jensen, S. Acta Chem. Scand. 24 (1970) 2169.
- 3. Ke, B., Imsgard, F., Kjøsen, H. and Liaaen-Jensen, S. Biochim. Biophys. Acta **210** (1970) 139.
- 4. Bieman, K., DeJongh, D. C. and Schnoes, H. K. J. Am. Chem. Soc. 85 (1963) 1763.
- 5. Painter, T. J. Chem. Ind. (London) 1960 1214.
- 6. Hertzberg, S. and Liaaen-Jensen, S. Phytochemistry 8 (1969) 1259.
 7. Hertzberg, S. and Liaaen-Jensen, S.
- Phytochemistry 8 (1969) 1281.
- 8. a. Jackman, L. M. and Sternhell, S. Application of Nuclear Magnetic Resonance Spectra in Organic Chemistry, 2nd Ed., Pergamon, London 1969; b. Schmidt, K., Francis, G. W. and Liaaen-Jensen, S. Acta Chem. Scand. 25 (1971) 2476.
- 9. Liaaen-Jensen, S. In Isler, O. Carotenoids, Birkhäuser, Basel 1971.
- Arpin, N., Liaaen-Jensen, S. and Trouilloud, M. Acta Chem. Scand. 26 (1972) 2524
- 11. Gounot, A. M. Ann. Spéléol. 22 (1967) 23.
- 12. Liaaen-Jensen, S. and Jensen, A. Methods Enzymol. 23 (1971) 586.
- 13. Kjøsen, H., Arpin, N. and Liaaen-Jensen, S. Acta Chem. Scand. In press.
- 14. Norgård, S., Francis, G. W., Jensen, A. and Liaaen-Jensen, S. Acta Chem. Scand. 24 (1970) 1460.

Received May 12, 1972.

Bacterial Carotenoids XL.* 2'-Hydroxyflexixanthin

MARTHA AGUILAR-MARTINEZ and SYNNØVE LIAAEN-JENSEN

Organic Chemistry Laboratories, Norwegian Institute of Technology, University of Trondheim, Trondheim, Norway

 ${
m The\,\,carotenoids\,\,of\,\,the\,\,gliding\,\,flexibacteria\,\,have\,\,been\,\,the\,\,subject\,\,of\,\,a\,\,number}$ of investigations.1-6 Flexixanthin (2) and the less abundant deoxyflexixanthin (1) are peculiar to several flexibacteria;1-3 other flexibacteria produce structurally related carotenoids.^{1,2,4-6}

We now report the isolation of flexixanthin (2) and the previously undescribed 2' hydroxyflexixanthin (3) from a nongliding bacterium, strain NIVA BR6-64. of uncertain taxonomic position.

Table 1. Properties of the carotenoids studied.

Carotenoid	λ_{\max} in acetone in nm	R_F -values	
		a	b
Deoxyflexixanthin (1)	478	0.52	0,55
Flexixanthin (2) 2'-Hydroxyflexi-	478,503	0.40	0.27
xanthin (3) Flexixanthin	478,504	0.19	0.10
acetate (4) 4 Trimethylsilyl	478	0.50	0.48
ether (5) Dehydroflexi-	477	0.68	0.90
xanthin (6) 2'-Ketoflexi-	478	0.38	0.0
xanthin (7) 2'-Ketoflexixanthin	500	0.16	0.18
acetate (8) 8 Trimethylsilyl	499	0.31	
ether (9) 2'-Ketodehydroflexi- xanthin trimethyl-	500	0.58	0.87
silyl ether (10)	499	0.40	0.0

a. Schleicher & Schüll No. 287 (kieselguhr) paper; 10 % acetone in petroleum ether.

b. Schleicher & Schüll No. 288 (aluminium oxide) paper; 20 % acetone in petroleum ether.

^{*} No. XXXIX. Acta Chem. Scand. 26 (1972) 2526.