Refinement of the Crystal Structure of Rubidium Cyanodinitromethanide HANS J. BJØRNSTAD and BERNT KLEWE* Department of Chemistry, University of Oslo, Oslo 3, Norway The crystals are orthorhombic, space group $P2_12_12_1$, with cell dimensions $a=7.56_{\rm o}$ Å, $b=14.96_{\rm r}$ Å, and $c=5.09_{\rm s}$ Å. 1129 X-ray reflections recorded on an automatic four-circle diffractometer were used in the full-matrix least squares refinement $(R_{\rm w}=4.8\%,\,R=6.3\%)$. The anion is not propeller shaped, the nitro groups being twisted 3° and 6° in opposite directions from a planar conformation. Several crystal structure determinations and other studies of 1,1-dinitro Compounds and dinitrocarbanions have been carried out; cf. Ref. 1 and references therein. Various physical and chemical properties of the $\mathrm{RC}(\mathrm{NO}_2)_2^-$ anions are sensitive to the steric requirements of R as discussed by Kaplan ² for the substituents NO_2 and CN . The increased acidity of cyanodinitromethane relative to trinitromethane must be due to differences in anion stability. The substitution of the linear cyano group for a nitro group permits the cyanodinitromethanide ion to have an essentially planar conformation, whereas the trinitromethanide anion is non-planar. X-Ray diffraction studies of the rubidium and the potassium salts of cyanodinitromethane were undertaken in this laboratory, using two- and three-dimensional photographic data, respectively. The potassium salt was independently investigated by Dr. James R. Holden, but as we had progressed further with the collection of data he discontinued his work on this compound. After the crystal structures had been determined, a diffractometer became available, and further refinement, using three-dimensional diffractometer data, was carried out. The structures had been determined when papers by Grigor'eva et al. on the same subject appeared.³⁻⁵ The accuracy of their determinations was rather low, however, and a meaningful discussion of relevant structural data was scarcely possible. In the present paper our results from the refinement of the crystal structure of rubidium cyanodinitromethanide is reported. The numbering of atoms is similar to that of Grigor'eva et al. However, the atomic parameters, etc., are different due to another choice of axes and origin. ^{*} To whom correspondence should be addressed. #### EXPERIMENTAL Rubidium eyanodinitromethanide was obtained in a metathetic reaction between the corresponding potassium salt and rubidium chloride in aqueous solution. To avoid potassium contamination the salt was repeatedly dissolved and precipitated from water by addition of rubidium chloride. The batch from which the crystal used in the X-ray experiments was taken was analyzed for potassium by means of flame photometry. The resulting potassium content of 0.84 % corresponds to a maximum atomic fraction (K/Rb) of 4.8 % in the crystal (if contaminated). Rubidium cyanodinitromethanide crystallizes (from water) as slightly yellow plates or diamond shaped prisms in the orthorhombic space group $P2_12_12_1$. The cell dimensions and estimated standard deviations were determined on a manual four-circle diffractometer using CuK radiation. All diffractometer setting angles were optimized in the least squares refinement. About 1700 reflections with $2\theta < 75^\circ$ were registered on an automatic four-circle diffractometer using MoKa radiation (0.002" Nb filter) and $\omega/2\theta$ scan technique. A crystal of length 0.32 mm mounted with b^* along the φ axis of the diffractometer was used for the data collection. The (101) and (101) planes were well developed and the cross section was a parallelogram with diagonals of 0.36 and 0.23 mm. The effects of secondary extinction were greatly reduced by repeatedly dipping the crystal in liquid nitrogen. The intensities of several strong reflections were more than doubled after such a treatment. The intensities of the standard reflections showed an increase of about 2.5 % during the first 500 measurements, the reason probably being a reduction in crystal perfection. During the last part of the data collection two of the standard reflections were quite stable whereas the intensity of the third one was reduced by 13 %. 1195 reflections were regarded as observed having intensities greater than twice their estimated standard deviations from counting statistics. A 2 % uncertainty in scaling and diffractometer stability was included in the standard deviations. The data set obtained by using the standard reflections for scaling did not lead to significant differences in the atomic parameters compared with those from the non-scaled data set. The unscaled data set was eventually used. The data were corrected for absorption. The linear absorption coefficient μ is 9.03 mm⁻¹ and the transmission factor varied between 0.13 and 0.29. Computer programs used are described in Ref. 6. The atomic form factors of Cromer and Waber were applied. For the anomalous scattering factor for rubidium the values $\Delta f' = -0.8$ and $\Delta f'' = 3.0$ were obtained by extrapolation from the values calculated by Cromer and Liberman for Cu, Zn, Ge, Br, and Kr. ## CRYSTAL DATA Rubidium cyanodinitromethanide, RbC₂N₃O₄, F.W. 215.5. Slightly yellow plates or diamond shaped prisms, orthorhombic. $a=7.560(3),\ b=14.967(5),\ c=5.098(2)$ Å, V=576.8 ų. $F(000)=404;\ Z=4;\ \varrho_{\rm obs}=2.46$ g cm⁻³, $\varrho_{\rm calc}=2.481$ g cm⁻³; $\mu=9.03$ mm⁻¹. Space group $P2_12_12_1$. ### STRUCTURE REFINEMENT The atomic parameters determined earlier from two-dimensional film data by the heavy atom method were used as starting parameters in the full-matrix least squares refinements. The $R_{\rm w}$ value of 9 % using isotropic temperature factors was lowered to 6 % when anisotropic temperature factor for rubidium was included. Anomalous scattering factor by rubidium was taken into account with the sign of $\Delta f''$ determined by calculations based on 400 reflections. Anisotropic thermal parameters for all atoms were then introduced. By inspection of the strong reflections, the secondary extinction Table 1. Observed and calculated structure factors. (The five columns list values of $h,\,k,\,l$, 10 $F_{\rm c}$, and 10 $F_{\rm c}$.) | h k | ١ : | Fo | Fe | h | k | ı | F٥ | Fc | h | k | t i | Fo | Fc | h | k 1 | Fo | Fc | h | k | l | Fo | Fc | |---|---|---|---|---|---|---|--|---|---|--|---|---|---|---|---|--|--|---|--|---|---|---| | 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 0000000000000000000000000000000000000 | 319
1507
1515
152
163
255
108
255
108
273
114
110
653
331
132
278
268
273
114
107
653
331
391
653
371
391
108
273
1177
77
77
77
77
77
77
77
77
77
77
77
7 | 23
821
254 | 555556666666666777777777888888888888888 | 457890012345789012356790123679012345789123557890135012345789 | | Fo 1025 1055 1055 1055 1055 1055 1055 1055 | 109 80 30 30 30 30 30 30 30 30 30 30 30 30 30 | •••••••••••••••••••••••••••••••••••••• | 5789010 1234567890122145678901220 1234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901200000000000000000000000000000000000 | 111111111111111111111111111111111111111 | 1636456462900554654421621678887989716316451611111 4885783116610111148857831167865442242221111 | 157
1297
1619
1619
57
6619
57
6619
57
6619
57
6619
6619
6619
6619
67
67
67
67
67
67
67
67
67
67
67
67
67 | 555555555555566666666666666677777777777 | 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 316 433 316 433 3287 287 287 287 287 287 287 287 287 287 | 191
201
201
202
202
203
203
203
203
203
203
203
204
204
204
204
204
204
204
204
204
204 | 111111222000000000000000000000000000000 | 5789120245012345678912345791344012345678901235679020123456789012467801211111222 | 111111111111122222222222222222222222222 | 86
64
72
72
76
75
76
62
76
62
78
78
488
824
126
892
241
892
241
892
241
118
118
118
118
118
118
118
118
118
1 | 81
83
84
85
85
85
86
85
86
87
87
87
87
87
87
87
87
87
87 | | 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 318
273
173
65
177
72
431
839
331
323
367
510
289
75
539
150 | 61
173
62
460
995
353
342
563
298
78
578
152
74
282
86
170 | 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 8 9 11 12 13 15 16 17 1 2 3 3 5 7 7 8 9 10 11 11 11 15 15 15 15 15 15 15 15 15 15 | 000000000000000000000000000000000000000 | 220
856
1666
73
511
1353
210
417
162
159
121
166
148 | 219
68
173
70
50
127
29
192
23
243
157
175
33
149
56
111
111
64
143
98 | *** ** ** ** ** ** ** ** ** ** ** ** ** | 123 456 178 9 0 1 2 3 4 5 6 7 8 9 1 1 1 | 1 | 3786519114885767134269168229 | 3 09
189
189
2718
186
178
185
185
185
185
185
185
185
185
185
18 | 777 77777778888888888888888888888888888 | 9 10 11 12 13 14 15 16 17 19 20 0 11 2 3 4 5 6 7 8 9 11 1 | 173
248
217
156
1 184
1 213
1 122 | 144
163
102
82
87
70
40
35
174
210
152
183
209
116
97 | 5 | 112
123
16
17
19
20
1
23
4
5
6
7
8
9 | N N N N N N N N N N N N N N N N N N N | 143
479
2361
1867
1867
1863
784
737
2873
2873
2873
2873
2873
2873
2873 | 601
127
61
195
327
168
197
27
89
107
269
276
611
88
189
862
140
130
137
579
150
40
40
40
40
40
40
40
40
40
40
40
40
40 | | 3 | 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 581
2016
360
7433
2433
2433
1036
1137
1039
1138
1138
1138
1138
1138
1138
1138
11 | 651
211
26
221
254
254
254
254
254
254
254
254
254
254 | 10 | 8 9 9 11 1 2 2 6 8 8 10 0 0 10 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 | | 77 122 133 56 60 60 60 60 60 60 60 60 60 60 60 60 60 | 74
1104
681
1458
1458
1458
1215
702
758
765
567
125
767
733
733
745
745
745
745
745
745
745
745
745
745 | 3 | 14
15
16
17
18
20
21
20
21
23
44
56
78
89
10
11
12
13
14
15
16
17
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | | 211
177
104
107
107
107
107
107
107
107
107
107
107 | 187
144
64
110 | • | 10
12
35
67
9
10
11
14
15
67
8
9
10
11
12
13
10
11
11
11
11
11
11
11
11
11
11
11
11 | 1 65
1 55
1 63
1 215 | 82
203
141
187
121
114
138
93
85
52
77
114
116
100
91
100
83
78 | 3
3
3 | 0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | *************************************** | 559
466
185 | 62
169
562
478
178
539 | Acta Chem. Scand. 26 (1972) No. 5 Table 1. Continued | h k l F | o Fc | h k l | Fo Fc | h k l | Fo Fc | h k t | Fo Fc | h k l Fo Fc | |---|---------------------------------|---|--|---------------------------------------|---|--|--|---| | 4 9 2 35 | Z 243 | 0 4 3
0 5 3 | 51 47
274 265 | 5 11 3
5 12 3
5 13 3 | 116 114
79 62
155 159 | 1 13 4
1 14 4
1 15 4 | 143 155
154 151
102 103 | 9 3 4 147 134
9 5 4 117 114
9 7 4 88 93 | | 4 11 2 17
4 12 2 9
4 13 2 25 | 6 106 | 0 6 3
0 7 3
0 6 3 | 633 614
170 161
41 53
221 221 | 5 14 3
5 15 3 | 109 118
68 80 | 1 17 4 | 90 97
93 87 | 9 8 4 70 18
9 9 4 93 91 | | 4 14 2 15
4 15 2 13 | 0 151
4 133 | 0 9 3
0 10 3
0 11 3 | 221 221
416 416
222 228 | 5 18 3 | 92 87
86 81
273 288 | 1 19 4
2 0 4
2 1 4 | 67 58
121 122
224 218 | 9 11 4 99 69
9 13 4 77 70 | | 4 18 2 6
4 19 2 6 | 7 46
8 69 | 0 12 3 | 52 35
60 53 | 6 2 3 | 179 180
106 108 | 2 2 4 | 213 200
258 246 | 10 3 4 71 33
10 4 4 110 102 | | 5 0 2 71°
5 1 2 15
5 2 2 9 | 1 156 | 0 14 3
0 15 3
0 17 3 | 255 260
173 175
68 63 | 6 3 3 6 5 3 | 154 157
245 247
192 188 | 2 4 4 2 5 4 2 6 4 | 65 61
344 341
98 80 | 11 2 4 119 113 | | 5 2 2 9
5 3 2 17
5 4 2 53
5 5 2 9 | 8 563 | 0 17 3
0 18 3
0 19 3
0 22 3
1 0 3 | 95 87
100 96 | 6 6 3
6 7 3
6 8 3 | 139 140
159 159
151 148 | 2 7 4 2 8 4 2 9 4 | 318 317
79 84
294 291 | 0 1 5 242 238
0 2 5 150 150
0 3 5 256 260
0 4 5 76 79 | | 5 6 2 8 5 7 2 18 | 7 86
1 182 | 1 1 3 | 656 600
509 460 | 6 9 3 | 187 197
111 96 | 2 11 4 | 208 214
69 66 | 0 5 5 241 254
0 6 5 233 244 | | 5 8 2 27
5 9 2 15
5 10 2 8 | 8 157
9 92 | 1 2 3 1 3 3 1 4 3 | 310 292
318 298
369 342 | 6 11 3
6 12 3
6 13 3 | 124 127
105 108 | 2 13 4
2 14 4
2 15 4 | 121 131
70 62
113 119 | 0 7 5 242 262
0 9 5 178 176
0 10 5 123 140
0 11 5 116 115 | | 5 11 2 16
5 12 2 17
5 13 2 11 | 9 188 | 1 5 3 1 6 3 1 7 3 | 600 563
245 238
231 216 | 6 14 3
6 15 3
6 16 3 | 81 84
93 90
68 70 | 2 16 4
2 17 4
3 0 4 | 62 46
61 67
48 21 | 0 13 5 163 171 | | 5 15 2 5
5 16 2 15 | 4 39
6 161 | 1 8 3
1 9 3
1 10 3 | 266 252
286 272
237 229 | 6 16 3
7 0 3
7 1 3
7 2 3 | 361 375
147 148
49 38 | 3 1 4
3 2 4 | 277 277
501 503 | 0 15 5 95 107
0 17 5 94 87
0 19 5 82 63 | | 5 17 2 6
5 20 2 9
6 0 2 7 | 1 87 | 1 11 3 | 221 212
157 153 | 7 3 3 | 164 16 8
246 246 | 3 3 4
3 4 4
3 5 4 | 216 214
82 80
271 274
369 377 | 1 0 5 276 273 | | 6 1 2 18
6 2 2 46
6 3 2 8 | 3 191
4 490
9 88 | 1 13 3
1 14 3
1 15 3 | 162 169
134 130
137 139 | 7 5 3
7 6 3
7 7 3 | 47 41 | 3 6 4
3 7 4
3 9 4 | 369 377
144 143
80 85 | 1 3 5 93 96 | | 6 4 2 4 | 6 274 | 1 16 3 | 126 113
99 93 | 7 7 3
7 8 3
7 9 3
7 11 3 | 106 104
147 152
125 118
81 78 | 3 10 4
3 11 4
3 13 4 | 240 240
102 97
61 53 | 1 5 5 114 108
1 6 5 185 191
1 7 5 159 166 | | 6 7 2 19 | 1 195
0 39 | 2 0 3 | 642 602 | 7 12 3 | 97 105
65 63 | 3 14 4 3 15 4 | 215 223
72 67 | 1 8 5 128 116
1 9 5 133 138 | | 6 9 2 19
6 10 2 27
6 11 2 13
6 13 2 7 | 0 192
4 275
4 136
7 73 | 2 1 3 2 2 3 3 | 423 395
90 89
524 493 | 8 0 3 | 90 88
63 23
151 153 | 3 17 4
3 18 4
4 0 4 | 119 121
314 317 | 1 13 5 61 82 | | 6 11 2 13
6 13 2 7
6 14 2 17
6 18 2 9 | 7 73
3 171
4 97 | 2 4 3
2 5 3
2 7 3 | 517 492
317 311
380 374
414 404 | 8 1 3
8 2 3
8 3 3 | 139 148
172 169
114 119 | 1 1 4 | 192 191
68 73
275 273 | 1 14 5 77 82
1 15 5 83 76
1 16 5 88 68 | | 7 1 2 22 5 | 5 228
2 61 | 2 8 3
2 9 3
2 10 3 | 414 404
274 267
155 149 | 8 4 3
8 5 3
8 6 3 | 148 140
142 137
186 183 | 4 5 4 | 161 161
74 82 | 2 0 5 437 435 | | 7 4 2 5 7 5 2 24 | 3 57
8 254 | 2 11 3 | 178 177
268 268 | 8 7 3
8 8 3 | 86 89
113 106 | 4 8 4
4 9 4
4 10 4 | 322 328
90 88
54 43 | 2 3 5 187 188
2 4 5 335 339 | | 7 6 2 7
7 7 2 22
7 8 2 6 | 2 234 | 2 13 3
2 14 3
2 15 3 | 180 189
65 53
103 98 | 6 9 3
6 10 3
6 11 3
8 14 3 | 108 92
109 106
115 98 | 4 11 4
4 12 4
4 13 4
4 15 4 | 136 133
185 207
72 63
81 86 | 2 7 5 103 104
2 8 5 197 199 | | 7 9 2 17
7 11 2 17
7 13 2 12 | 4 100
2 169
3 120 | 2 16 3
2 17 3
2 10 3 | 125 132
69 61
62 41
73 69 | 8 14 3
8 15 3
9 1 3 | 66 66
63 63
120 119 | 4 15 4
4 16 4
4 19 4 | 81 86
79 74
73 41 | 2 9 5 166 162
2 11 5 80 85
2 12 5 154 161
2 13 5 105 110 | | 7 15 2 11 7 16 2 6 | 6 119 | 2 19 3 | 67 68 | 9 2 3 9 3 3 | 106 103
127 119 | 5 1 4
5 2 4
5 3 4 | 349 347
217 223
241 238 | 2 16 5 88 118 | | 7 18 2 7
8 1 2 19 | 2 199 | 2 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 69 48
416 411
460 457 | 9 6 3 | 89 8 9
83 92 | 5 5 4 | 73 73
296 297 | 3 0 5 136 137
3 1 5 161 160 | | 8 2 2 19
8 3 2 15
8 4 2 7 | 0 155
6 80 | 3 2 3 3 3 3 3 4 3 | 262 260
279 277
489 484 | 9 9 3
9 10 3
9 11 3 | 59 58
57 64 | 5 6 4
5 7 4
5 8 4 | 146 147
133 140
89 94
166 176 | 3 2 5 120 113
3 3 5 209 221
3 4 5 156 169 | | 8 5 2 18
8 6 2 11 | .0 115 | 3 5 3
3 6 3
3 7 3 | 193 189
140 141
196 196 | 9 13 3
9 14 3
10 1 3 | 62 71
68 38
71 69 | 5 9 4 | 168 176
89 86
101 115 | 3 5 5 157 168
3 6 5 158 179 | | 8 8 2 4 | 8 57
7 142 | 3 8 3 | 280 279
115 110 | 10 2 3 | 101 93
87 82 | 5 10 4
5 11 4
5 13 4
5 14 4 | 101 106
97 99 | 3 7 5 149 165
3 8 5 100 105
3 9 5 108 117 | | 8 11 2 13
8 13 2 8 | 10 130
17 79 | 3 10 3
3 11 3
3 12 3 | 56 24
139 132
210 217 | 10 4 3
10 5 3
10 6 3
10 7 3 | 74 83
80 64
65 69 | 5 14 4
5 15 4
5 17 4
6 0 4
6 1 4 | 103 99
82 77
158 158
194 191 | 3 9 5 108 117
3 10 5 111 115
3 11 5 88 107
3 13 5 66 75
3 15 5 67 62 | | 8 14 2 6 | 13 83
58 66
50 45 | 3 13 3
3 14 3
3 15 3 | 139 141
93 99
82 75 | 10 7 3
10 8 3
10 10 3 | 105 88
129 109
71 60 | 6 1 4
6 2 4
6 3 4 | 194 191
80 72
167 166 | 3 15 5 67 62
3 19 5 63 43
4 0 5 132 130 | | 9 0 2 28 | 17 285
11 61 | 3 16 3 | 141 149 | 10 11 3 | 65 59
92 62 | 6 4 4 6 5 4 | 189 194 | 4 1 5 202 214
4 2 5 165 157
4 3 5 226 228 | | 9 7 2 5 | io 13
io 185 | 4 0 3 | 67 56
72 71
202 192 | 10 13 3
11 0 3
11 1 3
11 4 3 | 87 44
109 96
94 72
107 90 | 6 8 4 | 116 120
127 136 | 4 4 5 122 116
4 5 5 161 153 | | 9 11 2 1 | 57 54
58 31
50 141 | 4 2 3 | 405 398
245 242
154 148
393 391 | 11 5 3 | 76 43
82 46 | 6 11 4
6 12 4
6 15 4 | 100 96
69 70
79 73
61 48 | 4 6 5 177 179
4 7 5 112 108
4 8 5 72 59 | | 9 16 2 17 | 22 82
24 106
22 102 | 4 5 3 | 393 391
353 346
376 369 | 11 8 3
12 1 3
0 0 4 | 72 64
68 50
786 726 | 6 17 4
7 0 4
7 2 4 | 61 40
48 22
227 229
65 53 | 4 9 5 146 151
4 10 5 155 159
4 11 5 86 100 | | 10 3 2 10 |)1 98
59 15 | 4 6 3 | 149 144
293 293
291 292 | 0 1 4 | 39 26
133 126
175 173 | 7 6 4 | 240 634 | 4 12 5 72 66
4 13 5 90 93 | | 10 6 2 11 | 14 109
58 78 | 4 10 3
4 11 3
4 12 3 | 210 211
77 66 | 8 1 1 | 625 597
294 280 | 7 9 4
7 10 4
7 11 4 | 68 60
210 209
56 45
60 32 | 4 14 5 107 84
4 17 5 70 65
4 18 5 69 50
4 19 5 72 56 | | 10 10 2 | 87 65
94 85
66 58 | 4 13 3
4 14 3
4 15 3 | 120 123
129 136
132 131 | 0 9 4
8 10 4
9 12 4 | 50 56
67 49
229 218 | 7 12 4 | 60 32 | E A E 4E 49 | | 10 12 2 11
11 1 2 11
11 3 2 14 | 63 28
04 104
44 129 | 4 17 3 | 132 131
63 32
87 84
114 125 | 0 16 4 | 229 218
152 149
74 79
384 362 | 8 1 4 | 117 113
140 138
90 97
58 33
89 76 | 5 0 5 65 62
5 1 5 134 132
5 2 5 120 136
5 3 5 168 163
5 4 5 60 57 | | 10 11 2 11 1 2 11 11 3 2 11 11 7 2 11 11 7 2 11 11 7 2 11 11 2 12 2 2 12 3 2 12 6 2 3 3 3 3 3 3 3 3 3 3 3 | 79 75
92 86 | 5 2 3 | 243 241
300 294 | 1 1 4 4 1 3 4 4 1 5 4 | 384 362
356 349
311 293 | 8 2 4 | 89 76
146 145 | 5 5 5 106 98
5 6 5 153 165 | | 11 11 2 | 76 66
62 45
93 76 | 5 3 3
5 4 3
5 5 3
5 6 3
5 7 3 | 209 212 | 1 6 4 | 311 293
56 61
391 373
262 299
248 243 | 8 4 4
8 5 4
8 7 4
8 8 4 | 146 145
86 86
83 64
106 107
63 56
93 78 | 5 7 5 101 98
5 9 5 55 52
5 10 5 148 145 | | 11 5 2 11 7 2 11 11 7 2 11 11 2 11 12 2 2 12 12 3 2 11 12 6 2 10 1 3 3 3 0 3 3 3 3 3 3 3 3 3 | 66 46
96 86
95 366 | 5 6 3 5 7 3 5 8 3 | 236 230
208 208
94 81 | 1 9 4 | 248 243
289 283
273 280 | 8 9 4 | | 5 9 5 55 52
5 10 5 148 145
5 11 5 71 63
5 13 5 81 42
5 14 5 69 80
6 0 5 201 202
6 1 5 108 112 | | 0 2 3 3 | 92 365
93 365 | 5 8 3
5 9 3
5 10 3 | 194 191
176 172 | 1 11 4 | 173 175
66 54 | 8 12 4
9 0 4
9 1 4
9 2 4 | 155 147
59 49 | 5 14 5 69 80
6 0 5 201 202
6 1 5 108 112 | | | | | | | | | | | Table 1. Continued. | h | k | ι | Fo | Fc | h | k | ι | Fo | Fc | h | k | ι | Fo | Fc | h | k | ı | Fo | Fc | h | k | ι | Fo | Fc | |-----|----|----|----------|----------|----|---------|----|----------|-----------|--------|----|----|-----------|-----------|-----|-----|----------|----------|-----------|---|-----|---|----------|----------| | | | | 93 | 87 | 10 | , | • | 69 | 54 | 3 | 4 | 6 | 108 | 116 | 7 | 5 | 6 | 79 | 99 | 3 | 5 | 7 | 66 | 75 | | 6 | 3 | 5 | 181 | 183 | 10 | 2 | 5 | 83 | 50 | 3 | 5 | ě | 144 | 154 | 7 | 7 | 6 | 86 | 64 | 3 | 8. | 7 | 75 | 93 | | Ä | Š | 5 | 124 | 118 | 10 | Ä | 5 | 63 | 63 | 3 | 6 | ě | 69 | 54 | 7 | 9 | 6 | 84 | 91 | 3 | 9 | 7 | 72 | 55 | | ě | 6 | 5 | 80 | 78 | 10 | 6 | 5 | 65 | 32 | 3 | 7 | 6 | 148 | 162 | 7 | 11 | -6 | 77 | 77 | 3 | 12 | 7 | 79 | 70 | | 6 | 7 | 5 | 54 | 61 | | 1 | 6 | 200 | 199 | 3 | 8 | 6 | 114 | 118 | | 1 | 6 | 76 | 63 | | 2 | 7 | 118 | 119 | | 6 | 8 | -5 | 162 | 163 | 0 | 3 | 6 | 177 | 180 | 3 | 9 | 6 | 110 | 114 | 8 | 5 | 6 | 90 | 85 | 4 | 3 | 7 | 70 | 72 | | 6 | 9 | 5 | 89 | 81 | 0 | 5 | 6 | 222 | 232 | 3 | 11 | 6 | 84 | 105 | 8 | 6 | 6 | 82 | 54 | • | 5 | 7 | 58 | 14 | | 6 | 10 | 5 | 76 | 72 | 0 | 7 | -6 | 80 | 65 | 3 | 12 | 6 | 58 | 63 | 9 | 2 | 6 | 76 | 82 | 4 | . 6 | 7 | 77 | 94 | | 6 | 12 | 5 | 115 | 112 | • | 9 | 6 | 116 | 132 | 3 | | ۰ | 61 | 66 | - 7 | - | | 62 | 24 | 5 | 11 | 7 | 70 | 35 | | ۰ | 13 | 3 | 79 | 62 | 0 | 10 | 6 | 63 | 59
95 | • | 0 | -6 | 62
174 | 57
199 | ő | 7 | 6 | 90
70 | 77
81 | 5 | 0 | ŕ | 69
70 | 63
68 | | 2 | 14 | 2 | 58
72 | 40
36 | 0 | 11 | 6 | 85
85 | 93 | 7 | 2 | 6 | 77 | 67 | ŏ | ; | i | 143 | 152 | 5 | 6 | ŕ | 98 | 72 | | 2 | 16 | .5 | 81 | 77 | | 15 | | 187 | 191 | 7 | 5 | 6 | 107 | 125 | ŏ | 5 | ż | 69 | 49 | 5 | 9 | 7 | 75 | 55 | | Ţ | .0 | - | 137 | 146 | i | 0 | 2 | 145 | 154 | 7 | 4 | 7 | 59 | 36 | ō | 6 | 7 | 151 | 144 | 6 | ž | 7 | 60 | 44 | | ÷ | ĭ | | 129 | 122 | • | ż | Ä | 100 | 97 | I | 5 | 2 | 99 | 103 | ŏ | 10 | Ż | 116 | 127 | ě | Ā | ż | 61 | 35 | | ÷ | 3 | | 98 | 95 | i | 3 | ĕ | 94 | 92 | 7 | ĭ | ĕ | 82 | 87 | 0 | 14 | 7 | 75 | 90 | 6 | 5 | 7 | 60 | 57 | | 7 | ĕ | Š | 96 | 98 | i | 4 | 6 | 199 | 199 | 4 | 9 | 6 | 71 | 79 | 1 | 0 | 7 | 70 | 66 | 6 | 7 | 7 | 65 | 59 | | 7 | 5 | 5 | 80 | 63 | ī | 5 | 6 | 133 | 137 | • | 10 | 6 | 57 | 58 | 1 | 1 | 7 | 86 | 102 | 7 | 0 | 7 | · 61 | 77 | | 7 | 7 | -5 | 107 | 96 | i | 6 | 6 | 82 | 68 | 4 | 11 | 6 | 59 | 63 | 1 | 3 | 7 | 75 | 71 | 7 | 4 | 7 | 77 | 68 | | 7 | 8 | 5 | 91 | 75 | ī | 7 | 6 | 64 | 55 | 4 | 13 | 6 | 66 | 69 | 1 | • | 7 | 71 | 73 | 0 | 0 | 8 | 100 | 110 | | 7 | 9 | 5 | 60 | 55 | 1 | 8 | 6 | 175 | 180 | 5 | 0 | 6 | 172 | 178 | 1 | 5 | 7 | 98 | 93 | 0 | * | | 79 | 108 | | 7 | 12 | 5 | 69 | 65 | 1 | 9 | 6 | 107 | 107 | 5 | 1 | 6 | 56 | 43 | 1 | 7 | 7 | 84 | 85 | 0 | - ' | 8 | 65 | | | 7 | 15 | 5 | 62 | 56 | 1 | 11 | 6 | 101 | | 5 | 3 | 6 | 97 | 84 | 1 | . 9 | 7 | 70 | 87 | 0 | 9 | 8 | 77
63 | 85 | | | 1 | 5 | 127 | 134 | 1 | 12 | 6 | 103 | 115
73 | 5 | * | 6 | 175 | 193 | | 10 | 7 | 89 | 90 | ٠ | 0 | 8 | 72 | 40 | | | 2 | 5 | 59 | 56 | 1 | 15 | 6 | 72
61 | 58 | 5
5 | 7 | 6 | 99 | 94 | | 14 | , | 66 | 47 | • | ٦ | ä | 79 | 65 | | | 3 | 5 | 121 | 121 | 2 | 16
1 | 6 | 96 | 98 | 5 | | è | 137
61 | 143 | 5 | 1 | 4 | 104 | 99
112 | • | 3 | ă | 71 | 63 | | - | : | | | 110 | | | ě | 233 | 260 | 5 | 11 | ě | 81 | 90 | Ş | 3 | ż | 119 | 113 | ż | ĭ | ě | 62 | 79 | | - 2 | 7 | 5 | 113 | 164 | 5 | 2 | ě | 55 | 29 | 5 | 13 | ě | 68 | 41 | ž | 5 | ź | 92 | 100 | ž | 3 | 8 | 75 | 78 | | | 7 | | 66 | 91 | ž | - Ā | 6 | 62 | 55 | 6 | ĩ | ě | 59 | 45 | 2 | 7 | 7 | 63 | 84 | ž | 5 | | 70 | 68 | | ă | ģ | 5 | 64 | Ś. | 2 | ě | ĕ | 198 | 219 | 6 | ž | 6 | 136 | 140 | 2 | 8 | 7 | 57 | 29 | 2 | 6 | | 62 | 31 | | | 11 | | 60 | 35 | 2 | 10 | 6 | 120 | 134 | 6 | 5 | 6 | 80 | 86 | 2 | 9 | 7 | 65 | 62 | 2 | 7 | 8 | 65 | 71 | | ğ | 11 | 5 | 75 | 78 | ž | 14 | ě | 95 | 101 | 6 | 6 | 6 | 108 | 103 | 2 | 14 | 7 | 66 | 10 | 3 | 1 | 8 | 77 | 46 | | 9 | 6 | -5 | 106 | 94 | 2 | 16 | 6 | 60 | 15 | 6 | 10 | 6 | 60 | 74 | 3 | 0 | 7 | 101 | 119 | 3 | 5 | 8 | 60 | 60 | | 9 | 9 | 5 | 73 | 35 | 3 | 0 | 6 | 103 | 103 | 7 | 1 | 6 | 103 | 103 | 3 | 1 | 7 | 58 | 65 | • | 0 | | 85 | 100 | | 9 | 10 | 5 | 81 | 79 | 3 | 1 | 6 | 109 | 108 | 7 | 2 | 6 | 71 | 51 | 3 | 3 | 7 | 87 | 96 | • | • | 8 | 84 | 83 | | 10 | 0 | 5 | 64 | 83 | 3 | 3 | 6 | 107 | 102 | 7 | 3 | 6 | 77 | 81 | 3 | 4 | 7 | 106 | 114 | 4 | 5 | 8 | 71 | 38 | Table 2. Fractional atomic coordinates ($\times 10^5$) and thermal parameters ($\times 10^5$ for Rb⁺ and $\times 10^4$ for other atoms) with estimated standard deviations. The temperature factor is given by exp $-(B_{11}h^2+B_{22}k^2+B_{33}l^2+B_{12}hk+B_{13}hl+B_{23}kl)$. For numbering of atoms, see Fig. 1. | \mathbf{Atom} | \boldsymbol{x} | y | z | B_{11} | B_{22} | B_{33} | B_{12} | B_{13} | B_{23} | |-----------------|------------------|-------|-------|----------|----------|------------|----------|----------|----------| | Rb ⁺ | 36183 | 12463 | 88042 | 1037 | 370 | 2514 | 14 | 218 | 284 | | | 6 | 4 | 12 | 8 | 3 | 22 | 8 | 31 | 17 | | O11 | 22896 | 43127 | 16168 | 111 | 42 | 265 | 7 | -85 | 59 | | | 51 | 28 | 92 | 7 | 2 | 21 | 6 | 21 | 12 | | O12 | 49647 | 47815 | 21442 | 145 | 37 | 251 | - 30 | 21 | 30 | | | 59 | 28 | 93 | 8 | 2 | 19 | 7 | 22 | 11 | | O21 | 66032 | 41476 | 62849 | 109 | 49 | 370 | -29 | 55 | 36 | | | 49 | 32 | 117 | 7 | 2 | 21 | 6 | 27 | 14 | | O22 | 51122 | 31658 | 84999 | 184 | 39 | 182 | 1 | -85 | 81 | | | 58 | 28 | 86 | 8 | 2 | 17 | 7 | $\bf 24$ | 12 | | NI | 36978 | 43251 | 28394 | 106 | 24 | 186 | 0 | - 33 | - 9 | | | 56 | 29 | 95 | 8 | 2 | 17 | 7 | 22 | 10 | | N2 | 51972 | 37109 | 66848 | 107 | 29 | 266 | 5 | -30 | 6 | | | 58 | 31 | 99 | 7 | 2 | 22 | 8 | 21 | 16 | | N3 | 9371 | 29811 | 64500 | 153 | 44 | 333 | -48 | 1 | - 2 | | | 63 | 36 | 142 | 9 | 3 | 26 | 8 | 32 | 16 | | C0 | 37653 | 37965 | 50799 | 86 | 24 | 196 | - 6 | -20 | -23 | | | 59 | 38 | 112 | 7 | 2 | 18 | 9 | 22 | 14 | | C3 | 22036 | 33401 | 58256 | 121 | 29 | 208 | - 8 | - 46 | - 8 | | | 74 | 39 | 128 | 9 | 2 | 28 | 8 | 29 | 14 | Table 3. The root mean square amplitudes of vibration $(\overline{u^2})^{\frac{1}{2}}$ (Å) and B-values (Ų) along the principal axes given by the components of a unit vector in fractional coordinates (×10³). | Atom | $(\overline{u^2})^{ rac{1}{2}}$ | B | e_x | e_y | e_z | |--------|---------------------------------|------------|----------|-----------------|-------| | | .211 | 3.53 | 12 | 60 | 86 | | Rb^+ | .179 | 2.52 | 85 | -26 | 129 | | | .169 | 2.25 | 100 | $\overline{15}$ | -120 | | | .234 | 4.31 | - 17 | 56 | 105 | | O11 | .196 | 3.03 | 102 | 28 | - 92 | | | .148 | 1.72 | 82 | - 24 | 137 | | | .226 | 4.04 | - 87 | 49 | 32 | | O12 | .196 | 3.04 | 82 | 28 | 130 | | | .166 | 2.18 | 56 | 36 | -143 | | | .252 | 5.00 | - 39 | 55 | 97 | | O21 | .211 | 3.52 | 2 | 35 | -167 | | | .168 | $\bf 2.24$ | 126 | 16 | 33 | | | .240 | 4.56 | -102 | 32 | 81 | | O22 | .224 | 3.96 | 81 | 50 | 50 | | | .119 | 1.13 | 25 | -30 | 171 | | | .179 | 2.53 | 119 | 9 | - 81 | | Nl | .167 | 2.20 | 33 | -63 | 47 | | | .150 | 1.78 | 47 | 21 | 172 | | | .191 | 2.89 | - 58 | 7 | 175 | | N2 | .183 | $\bf 2.65$ | 55 | 61 | 19 | | | .169 | 2.26 | 106 | -27 | 86 | | | .247 | 4.81 | 84 | -51 | 4 | | N3 | .209 | 3.46 | - 4 | 0 | 196 | | | .182 | 2.61 | 102 | 42 | 4 | | | .176 | 2.45 | 2 | -51 | 128 | | C0 | .162 | 2.08 | -114 | 22 | 78 | | | .142 | 1.60 | 68 | 38 | 127 | | | .194 | 2.97 | -117 | ${\bf 22}$ | 65 | | C3 | .182 | 2.62 | 25 | 60 | - 78 | | | .157 | 1.94 | 57 | 19 | 168 | $Table\ 4.$ Bond distances and angles of the anion. Distances in parentheses are corrected for libration. | Bond dis | stances (Å) | Bond angles (° |) | |----------|---------------|--|-------| | N1 - O11 | 1.234 (1.238) | $\begin{array}{c} \text{C0} - \text{N1} - \text{O11} \\ \text{C0} - \text{N1} - \text{O12} \\ \text{O11} - \text{N1} - \text{O12} \\ \text{C0} - \text{N2} - \text{O21} \\ \text{C0} - \text{N2} - \text{O22} \\ \text{O21} - \text{N2} - \text{O22} \\ \text{N1} - \text{C0} - \text{N2} \\ \text{N1} - \text{C0} - \text{C3} \\ \text{N2} - \text{C0} - \text{C3} \end{array}$ | 116.0 | | N1 - O12 | 1.229 (1.233) | | 121.6 | | N2 - O21 | 1.264 (1.268) | | 122.4 | | N2 - O22 | 1.235 (1.239) | | 121.5 | | C0 - N1 | 1.390 (1.396) | | 118.1 | | C0 - N2 | 1.363 (1.370) | | 120.4 | | C0 - C3 | 1.416 (1.422) | | 125.2 | | C3 - N3 | 1.143 (1.146) | | 117.7 | Acta Chem. Scand. 26 (1972) No. 5 Fig. 1. Bond distances (a) and bond angles (b) (uncorrected values) of the anion. Fig. 2. Schematic drawing of the structure viewed along c. Equivalent position numbers of Table 5 are indicated. effects were found to be dependent on the time of registration, and 66 reflections having $F_{\rm obs} > 50$ were excluded from the refinement. The final $R_{\rm w}$ and R values for 1129 intensities were 4.8 % and 6.3 %. The weight analysis indicates that a higher estimate of the fluctuation in the measurements might be appropriate. No improvement was obtained by omitting more reflections of high intensities or small sin θ values. Observed and calculated structure factors are listed in Table 1 and final atomic parameters in Table 2. The eigenvalues of the atomic vibration tensors are given in Table 3. The r.m.s. discrepancy between "observed" atomic vibration tensor components and those calculated for a rigid-body model is 0.0030 Ų for the anion. This may indicate a fairly rigid anion although the thermal parameters in particular may be influenced by systematic errors. The corrected as well as the uncorrected bond distances and bond angles are presented in Table 4. The latter values may also be found in Fig. 1. The estimated standard deviations calculated from the correlation matrix of the last least squares refinement cycle are 0.006 Å and 0.007 Å for N-O bonds and other bonds, respectively, and 0.7° or 0.5° or less for angles of 180° and 120°. The coordination of the cation is shown in Fig. 2, and the corresponding distances are given in Table 5. |
Atom | Equiv. pos. | No. | (Å) | |----------|--|---------|------| |
011 | $\frac{1}{3} + x$, $\frac{1}{3} - y$, $1 - z$ | 1 | 2.91 | | 012 | $\frac{\frac{1}{2} + x}{1 - x}, \frac{\frac{1}{2} - y}{1 + y}, \frac{1 - z}{3/2 - z}$ | $ar{2}$ | 3.20 | | 012 | $-\frac{1}{2}+x$, $\frac{1}{2}-y$, $1-z$ | 3 | 3.20 | | 021 | 2,, 2 3, | $ar{2}$ | 3.15 | | O21 | | 3 | 3.07 | | O21 | $-\frac{1}{2}+x$, $\frac{1}{2}-y$, $2-z$ | 4 | 2.99 | | O22 | 2 () 2 3 / | 4 | 3.11 | | O22 | x, y, z | 5 | 3.09 | | N3 | $\frac{1}{2} + x, \frac{1}{2} - y, 2 - z$ | 6 | 3.20 | Table 5. Coordination distances of the rubidium ion. ## DISCUSSION The anion is essentially planar with the nitro groups slightly twisted out of the plane. The twists have opposite directions, however, and the anion is thus not propeller shaped. This is contrary to what is observed for the same anion in the crystal structure of the potassium salt,^{5,9} but similar to that observed for the anions of rubidium dinitromethanide ¹⁰ and potassium p-chlorophenyldinitromethanide.¹¹ The central carbon atom (C0) is coplanar with its neighbours, the deviation from the plane through N1, N2, and C3 being 0.019 Å. N3 deviates 0.035 Å in opposite direction to C0 from this plane. O12 and O21 are 0.065 and 0.092 Å above the least squares plane through C0, N1, N2, and C3. O11 and O22 are 0.030 and 0.117 Å below the same plane. The twist angles of O11,N1,O12 and O21,N2,O22 are 2.7 and 5.5°, respectively. The symmetry of the anion is close to C_s . The bond distances and angles of the anion are normal (see Table 6 in Ref. 1) contrary to the unsymmetrical arrangement discussed by Grigor'eva et al.³ Their comments on the N1-C0-N2 angle is also incorrect. The value of this angle (125.2°) is significantly larger than 120° as being predicted by Kemlet et al.¹² The C-C bond length (1.416 Å) is not significantly shorter than a normal sp^2-sp C-C single bond (1.43 Å). The O12···O21 contact is 2.62 Å. The conformation of the anion is determined by crystal forces. The cation is coordinated to eight oxygen atoms and one cyano nitrogen atom of six different anions in an irregular arrangement (Table 5 and Fig. 2). The C3 $-N3\cdots Rb^+$ angle is 120° and the coordination distance of 3.20 Å is quite reasonable. The shortest *intra*-molecular distances are $C0\cdots N3$ (3.22 Å) and $N2 \cdots N3$ (3.05 Å) between anions related by a screw axis along a, $C0 \cdots O11$ (3.04 Å) and N1···O11 (2.90 Å) between anions related by a screw axis along \dot{c} , and $\dot{N}1\cdots\dot{O}22$ (3.00 Å) between translational equivalent anions (along \dot{c}). Finally, the discrepancy in cell dimensions between the earlier findings 3 and those of the present investigation must be mentioned; the values for the b axis being 15.18 and 14.97 Å, respectively. Testing for contamination of potassium in the crystal, if any, by refinement of the occupation factor of rubidium in the least squares refinement must be regarded with caution because of the coupling with the overall scale factor and has therefore not been carried out. A Guinier diagram from another batch of crystals, not analyzed for potassium, gave within limits of errors indentical values to those obtained from diffractometer measurements. #### REFERENCES - 1. Klewe, B. Acta Chem. Scand. 26 (1972) 1049. - 2. Kaplan, L. A. The Synthesis and Reactions of Trinitromethyl Compounds. In Feuer, H., Ed., The Chemistry of the Nitro and Nitroso Groups, Interscience, New York-Lon- - don Sydney Toronto 1970, Part 2, p. 289. Grigor'eva, N. V., Margolis, N. V., Shokhor, I. N., Tselinskii, I. V. and Mel'nikova, V. V. J. Struct. Chem. USSR (Eng. Transl.) 9 (1967) 151. Grigor'eva, N. V., Margolis, N. V., Shokhor, I. N., Tselinskii, I. V. and Mel'nikov, V. V. J. Struct. Chem. USSR (Eng. Transl.) 10 (1967) 151. - V. V. J. Struct. Chem. USSR (Eng. Transl.) 9 (1967) 478. 5. Grigor'eva, N. V., Margolis, N. V., Shokhor, I. N., Tselinskii, I. V. and Mel'nikov, V. V J. Struct. Chem. USSR (Eng. Transl.) 10 (1969) 834. 6. Dahl, T., Gram, F., Groth, P., Klewe, B. and Rømming, C. Acta Chem. Scand. 24. - (1970) 2232. - 7. Cromer, D. T. and Waber, J. T. Acta Cryst. 18 (1965) 104. - 8. Cromer, D. T. and Liberman, D. Private communication. - 9. Klewe, B. Acta Chem. Scand. In press. 10. Grigor'eva, N. V., Margolis, N. V., Shokhor, I. N., Tselinskii, I. V. and Mel'nikov, V. V. J. Struct. Chem. USSR (Eng. Transl.) 9 (1968) 475. - 11. Klewe, B. and Ramsøy, S. Acta Chem. Scand. 26 (1972) 1058. - 12. Kemlet, M. J., Oesterling, R. E. and Adolph, H. G. J. Chem. Soc. 1965 5838. - 13. Andersen, P., Klewe, B. and Thom, E. Acta Chem. Scand. 21 (1967) 1530. Received September 29, 1971.