Thermodynamic Properties of Rare Earth Complexes.

XII. Enthalpy and Heat Capacity Changes for the Formation of Rare Earth Diglycolate Complexes at 5, 20, 35, and 50°C

INGMAR GRENTHE and HEIKKI OTS

Division of Physical Chemistry, Chemical Centre, University of Lund, P.O.B. 740, S-220 07 Lund 7, Sweden

The changes in enthalpy and heat capacity for the formation of Pr(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III) diglycolate complexes have been determined at 5.00, 20.00, 35.00, and 50.00°C. All data refer to an aqueous sodium perchlorate medium with the sodium ion concentration equal to 1.00 M. The enthalpy changes were obtained from a direct calorimetric determination using the calorimeter and titration procedure described in a previous communication. The experimental results have been fitted to equations of the type:

$$\Delta H_i^{\circ} = A + BT + CT^2 + DT^3$$

from which the corresponding heat capacity changes have been obtained. The heat capacity data indicate the presence of a hydration equilibrium of the type $MA_2(H_2O)_x \rightleftharpoons MA_2(H_2O)_y$ for the second rare earth diglycolate complexes.

The data available in the literature on the temperature dependence of the enthalpy changes on complex formation are rather scarce. The results published indicate that the ΔC_{pj}° -values for reactions of this type are fairly large and moreover that these values vary significantly with temperature in the range $0-100^{\circ}\mathrm{C.^{1}}$ One of the aims of the present investigation has been to obtain information of this kind for a series of rare earth diglycolate complexes. Another object has been to decide whether hydration equilibria of the type

$$MA_i(H_2O)_x \rightleftharpoons MA_i(H_2O)_y + (x-y)H_2O$$
 (1)

are present or not, in the systems studied. A preliminary discussion of how ΔC_p° data can be of use in the latter context is given in the preceding publication ² of this series. The presence of an equilibrium of the type (1) implies differences in the number of coordinated donor atoms from the ligands A and H_2O , *i.e.* differences in the geometry of the coordination sphere. Spectro-

Acta Chem. Scand. 26 (1972) No. 3

scopic methods can in some cases, e.g. for the d-type transition elements, give information of the point symmetry at the central ion site in the coordination compounds. However, such information can usually not be obtained for f-type transition elements, as changes in the surroundings normally show only small influence on the f-f transitions (a possible exception is the so called hypersensitive transitions). Geier et al. ³ and Anderegg and Wenk⁴ have interpreted the temperature dependence of the spectra of various rare earth aminopolycarboxylates in terms of an equilibrium of the type (1). The method will only be useful if the spectral changes are fairly large and this is not always the case as indicated by measurements on the diglycolate and dipicolinate spectra of various rare earths (see p. 1240).

The stepwise enthalpy changes, ΔH_j° , have been determined by a direct calorimetric method at 5, 20, 35, and 50°C. Nine rare earth diglycolate systems have been investigated, viz. Pr(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III), for four of which the temperature dependences of the stepwise free energy changes have already been reported (preceding publication). The various heats of reaction were determined by use of the calorimeter and titration procedure described earlier. All measurements refer to an aqueous sodium perchlorate medium with 1.00 M total sodium ion concentration. All concentrations, volumes and additions given in this investigation refer to 25°C as discussed in a preceding publication.

NOTATION AND CALCULATION

The notation used here is the same as before.6

The enthalpy changes for the various reactions were determined by graphical and numerical methods. The graphical method, outlined earlier, was used to determine the enthalpies of protonation of the diglycolate ion, while the numerical methods were used in all other cases.

Two different numerical methods were used, one developed by Arnek' and the other by Ekström. Both methods give a set of "best" least-squares constants. The differences between the two methods lie in the type of input data used. Refs. 7 and 8 give details of the computing procedures. The enthalpy changes obtained from the two computing methods were essentially the same.

The stability constants, β_i , needed for the calculations were known at all four temperatures only for the Pr(III), Sm(III), Dy(III), and Yb(III) systems. On the basis of these results the following iterative procedure was used to calculate the stability constants and the enthalpy changes for the five remaining systems, for which β_i -values were known only at 20°C.

A first guess was made of the stability constants at the various temperatures from the known behaviour of the Pr, Sm, Dy, and Yb systems. The over-all enthalpy changes were then calculated. All stepwise complexes are strong and fairly well separated one from another and an error in the stability constants will thus only have a small influence on the enthalpy changes. Improved stability constants were then calculated from the log $K_i(T)$ functions obtained from $\Delta H_i^{\circ}(T)$ -data and the stability constants at 20°C. A recalculation of the various enthalpy changes using the new set of stability constants did not lead to any significant changes.

The stability constants at 20°C used for the calculations have been recalculated from data in Ref. 9. The corrected values are given in Table 8. The reasons for the corrections have been outlined in the preceding publication.

EXPERIMENTAL

Chemicals. Rare earth oxides were obtained from the American Potash & Chemical Corp. Stock solutions of the rare earth perchlorates were prepared and standardized as described before. The diglycolic acid (Fluka) was recrystallized from ethyl acetate. Stock solutions of the disodium salt of the acid were prepared by neutralization with sodium hydroxide. Sodium perchlorate was prepared as described earlier. §

sodium hydroxide. Sodium perchlorate was prepared as described earlier. $^{\rm s}$ Calorimetric titrations. The calorimeter and the experimental procedure used were the same as described before. $^{\rm 5}$ The measurements have been performed at 5.00, 20.00, 35.00, and 50.00°C. The calorimeter was filled with 100.24 ml (V_0) of a solution S. From a calibrated piston burett known volumes (v) were added of a solution T. For the rare earth diglycolate measurements the solutions S and T had the following composition:

$$\mathbf{S} \begin{cases} C_{\mathbf{M}} & \mathbf{M}(\mathbf{ClO_4})_3 \\ C_{\mathbf{H}} & \mathbf{HClO_4} \\ 1.00 \ \mathbf{M} \ \mathbf{NaClO_4} \end{cases} \qquad \qquad \mathbf{T} \begin{cases} C_{\mathbf{Na_1A}} & \mathbf{diglycolate} \\ (1.00 \ \mathbf{M} - 2C_{\mathbf{Na_2A}}) \ \mathbf{NaClO_4} \end{cases}$$

The sodium ion concentration was 1.00 M in all the measurements. The concentrations in the various rare earth perchlorate solutions S are given in Table 3. $C_{\text{Na},\text{A}}$ in solution T was 0.3000 M. The compositions of the S and T solutions used for determining the enthalpies of protonation of the diglycolate ion are given in Tables 1 and 2.

enthalpies of protonation of the diglycolate ion are given in Tables 1 and 2. The solution T was normally added in portions of 1.50 ml at 5°C and 50°C and 2.00 ml at 20°C and 35°C. Two runs were made for each system at each temperature with about ten additions in each run. The first, third etc. points in Table 4 belong to one titration and the second, fourth etc. points to the second titration. The highest \bar{n} -values reached in the titrations were approximately 2.85.

In order to obtain the heat equivalent of the various systems at least two electrical calibrations were performed in each run. The temperature changes in the calorimeter were small enough to be put proportional to the changes in the resistance of the thermistor.

The heats of dilution of the perchloric acid solutions and the sodium diglycolate solutions were small and at most 0.03 cal/2 ml. The heats of dilution of the rare earth perchlorate solutions (S) and the complexes have been neglected.

The thermodynamic standard state for the solute species in this study is a hypothetical ideal one molar solution in which the concentration of neutral salt (sodium perchlorate) is equal to 1.0 M.

Spectroscopic measurements. Spectra were recorded at four different temperatures viz. 2, 25, 45, and 65°C for the diglycolate and dipicolinate complexes of Eu, Dy, Ho, and Er by using a Cary 14 spectrophotometer. The solutions studied had the values of \bar{n} equal to 0.5, 1.5 (for the diglycolate solutions only), and 2.5. The complexes formed are so strong, that the relative amounts of the dominating species (M and MA at $\bar{n}=0.5$, MA and MA₂ at $\bar{n}=1.5$, and MA₂ and MA₃ at $\bar{n}=2.5$) do not change significantly with a change of temperature. Possible changes in the spectra can thus not be referred to a change in the relative amounts of the species MA_i.

Experimental absorbance curves at the highest and lowest temperatures are shown in Fig. 3. There are no pronounced changes in the spectra with temperature, apart from a slight shift towards lower wave length, followed by a small decrease of the absorption maximum. Hence, the f-f spectra are not suitable as indicators of environmental changes for these particular systems.

RESULTS

The experimental Q-values given in this study are positive for exothermal and negative for endothermal reactions.

The proton diglycolate system. The experimental data are given in Tables 1 and 2. The values of $Q_{\rm corr}$ in Table 1 have been obtained from the measured Q-values by correction for the dilution of the perchloric acid solutions. The heats of dilution of the S solutions (Na₂A) are small and can be neglected.

Table 1. Corresponding values of $v_{\rm tot}$ and $Q_{\rm corr}$ for the proton diglycolate system at 5, 20, 35, and 50°C. S: $C_{\rm A}=0.0300$ M; $C_{\rm Na}=1.00$ M. T: $C_{\rm H}=0.1014$ M; $C_{\rm Na}=1.00$ M.

Temp.:	5°C	20°C	35°C	50°C
$\frac{v_{ m tot}}{ m ml}$	$\frac{Q_{\mathrm{corr}}}{\mathrm{cal}}$	$rac{Q_{ m corr}}{ m cal}$	$rac{Q_{ m corr}}{{ m cal}}$	$rac{Q_{ m corr}}{ m cal}$
1.50 2.00	-0.014	-0.117	-0.220	- 0.247
3.00	-0.009	- 0.111	- 0.220	-0.242
4.00		-0.129	-0.216	
4.50	-0.022			-0.245
6.00	-0.020	-0.121	-0.212	-0.234
7.50	-0.014			-0.234
8.00		-0.120	-0.201	
9.00	-0.001		0.00	-0.225
10.00		-0.114	-0.206	0.010
10.50	± 0.000	0.700	0.101	-0.212
12.00	0.006	-0.102	-0.191	-0.215
13.50	0.007	0.004	0.109	-0.202
14.00	0.014	-0.094	-0.183	0.107
15.00 16.00	0.014	-0.086	-0.162	-0.197
$18.00 \\ 20.00$		$-0.084 \\ -0.062$	$-0.158 \\ -0.146$	
40.00	1	-0.002	-0.140	

In this titration, the highest $\overline{n}_{\rm H}$ -value reached was 0.6 and, consequently, only $\varDelta H_1{}^{\circ}$ could be evaluated.

In the second series, an S-solution of perchloric acid was titrated with a sodium diglycolate solution. The measured Q-values have been corrected for the dilution of the sodium diglycolate solutions and the corrected values are given in Table 2. In this case the heats of dilution of the perchloric acid solutions were neglected. The final $\bar{n}_{\rm H}$ -values in this titration were all close to 2 and the data were used to determine ΔH_2° .

Table 2. Corresponding values of $v_{\rm tot}$ and $Q_{\rm corr}$ for the proton diglycolate system at 5, 20, 35, and 50°C. S: $C_{\rm H}=0.0916$ M, $C_{\rm Na}=1.00$ M. T: $C_{\rm A}=0.0300$ M, $C_{\rm Na}=1.00$ M.

Temp.:	5°C	20°C	35°C	50°C
$rac{v_{ m tot}}{ m ml}$	$rac{Q_{ m corr}}{ m cal}$			
1.50 2.00	0.038	-0.015	-0.069	-0.101
3.00 4.00	0.036	-0.013	-0.066	-0.099
4.50 6.00	0.035	-0.012	-0.061	- 0.098

Temp.:	5 and	. 50°C	20 8		
Metal		$C_{ m Na}$ $=$	1.00 M		
ion	$rac{C_{ m M} imes 10^3}{ m M}$	$rac{C_{ m H} imes 10^3}{ m M}$	$\frac{C_{\rm M}\times 10^3}{\rm M}$	$rac{C_{ m H} imes 10^3}{ m M}$	
\mathbf{Pr}	13.59	0.852	18.12	1.136	
\mathbf{Sm}	14.16	1.080	18.88	1.440	
Gd	12.05	0.852	16.07	1.136	
${ m Tb}$	13.94	1.568	18.58	2.090	
$\mathbf{D}\mathbf{y}$	14.22	0.426	18.96	0.568	
m Ho	14.25	1.611	19.00	2.148	
\mathbf{Er}	12.47	0.681	16.63	0.908	
$\mathbf{Y}\mathbf{b}$	14.40	0.783	19.20	1.044	
Lu	13.07	0.941	17.41	1.254	

Table 3. The composition of the various rare earth perchlorate solutions (solutions S) at 5, 20, 35, and 50°C.

The stepwise enthalpy changes with their estimated errors are given in Table 5. The temperature dependence of the enthalpy changes was described by functions of the type:

 $\Delta H_i^{\circ} = A + BT + CT^2 + DT^3 \tag{2}$

and the various constants are given in Table 6. Expressions for the heat capacity changes, $\Delta C_{pj}^{\,\,\circ}$, are obtained by derivation of relation (2) and the values at 25.0°C are given in Table 7.

The rare earth diglycolate systems. All the experimental Q-values corrected for the heats of dilution of the ligand are given in Table 4. Values of the differences ($Q_{\rm corr,calc}-Q_{\rm corr,obs}$) are also given. The stepwise enthalpy changes, ΔH_i° , for the various systems with their corresponding standard deviations are shown in Table 5. The standard deviations in the individual measurements, $Sig~Q_{\rm corr}$, are included in the last column in this table.

The temperature dependence of the enthalpy changes for the rare earth complexes was described by the same type of relations as for diglycolic acid (eqn. 2). The constants for the various systems are given in Table 6. The heat capacity changes ΔC_{p_i} ° at 25.0°C, obtained from these functions are shown in Table 7.

Precision of the results. The values of $Sig\ Q_{corr}$, given in Table 5, are useful for an estimate of the precision of the enthalpy titrations. It is obvious that some results are more precise than others.

There are several possible reasons for the deviations, e.g. errors in the concentrations of the reacting species, errors in the stability constants used and temperature errors in the heat exchange device. We do not think that any of these errors alone can be large enough to cause differences in the precision between the various systems investigated. A combination of error sources seems to be a possible explanation of the observed variations in $Sig\ Q_{\rm corr}$.

Table 4. Corresponding values of $v_{\rm tot}$, $Q_{\rm corr}$, and $(Q_{\rm calc}-Q_{\rm corr})=\varDelta Q$ for the various rare earth diglycolate systems at 5, 20, 35 and 50°C.

Metal Ion	P	r	Si	•	G	d	I	тъ		Dy.	В	•	E	-	Y	ъ	1	-u
	Qcorr 103	Ag. 10 ³	gcorr'105	AG-103	Qcorr 103	49.10 ³	Gcorr 10	3 Ag- 103	Qcorr 10	69.10 ³	Q _{corr} ·10 ⁵	49-10 ³	Q _{corr} ·10 ⁵	89.10 ³	Quorr 103	29.10 ⁵	Gcorr'103	Ag. 103
Y tot		L				1			5	°c		<u> </u>						•
0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75 7.50 8.25 9.00 9.75 10.50 11.25 12.00 12.75 13.50 14.25 15.00	288 5709 581 580 580 581 566 545 531 480 317 232 179 130 95 71	-1 +6 +7 -4 -6 +2 +9 -1 +2 +4 -1 +3 -2 -4	379 749 746 768 784 794 844 873 873 873 674 575 463 424 347 203	-92705202666-227582+44-44-44	239 494 546 614 711 795 883 960 982 960 758 630 540 434 310	-8 -4 +5 +11 -5 +1 -3 +1 -3 +7 +9 -11 -2 -6 +4 +9	14 62 180 286 421 541 647 769 879 971 1012 1039 934 860 292	-8 +6 -1 +10 -7 +6 -1 -6 -9 +8 +6 +4 -1 +1 -5 +0	-124 -171 -49 107 252 378 515 645 761 884 989 1070 1120 1124 1086 1053 966	+21 +19 +11 -20 -15 -20 -15 -15 +13 +13 +14 -7 -7 -5 +14 +0 -71	-164 -306 -172 -44 81 204 341 478 604 741 109 1190 1234 1234 1208	-18 +7 -1 +2 +9 +2 -4 +2 -9 -6 +10 +17 -3 -15	-189 -547 -256 -145 -28 108 250 404 587 773 989 1226 1336 1477 1418 1139	-18 -14 +2 +8 +15 +11 +8 +3 -16 -11 -1 -2 +7 -1 +14	-174 -352 -317 -261 -203 -136 -57 -14 91 179 301 522 885 1257 1486 1517 1400 1177 881	-5 +11 +8 -9 -9 -12 +0 +14 +12 -3 -8 -7 -8 -7 +9 +18	-154 -298 -181 -123 -48 10 08 156 260 463 801 1175 1333 1259 1091 857 633 444 333	-5 -8 -6 -5 -1 +17 +17 +17 +16 -28 -24 +1 +11 +52 +31 +31 +1
V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									2	o °c								
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00	214 459 470 462 464 499 519 525 538 511 471 403 336 254 193 138 174 43 36	+13 -4 -11 +2 +11 -5 +8 -3 +5 +15 -10 -6 +6 +17 +8	352 701 715 734 767 795 882 940 976 894 957 894 894 698 698 616 552 460 316	-3 +2 +3 +2 +18 -123 -27 -3 +28 -3 -7 -4 -15 -26	164 340 425 527 659 797 957 1077 1126 1129 1055 964 861 753 581	-9 +4 +0 +1 -1 +9 -7 -11 +6 +3 +9 -7 -10 -9 +20	-141 -210 -71 85 251 424 625 795 974 1110 1218 1272 1275 1194 1126 951	+6 +5 -4 -4 -2 +8 -6 +9 -3 +4 -1 -1 +1 -7 +4 -10 +13	-297 -555 -359 -184 -10 403 611 820 1015 1205 1348 1479 1573 1573 1538	+4 +16 -9 -14 -2 +2 +2 +4 +1 -6 +10 +73 +8	-574 -706 -546 -588 -288 -38 145 554 779 98 1226 1446 1652 1771 1809 1701	-8 +9 -10 -10 +15 -1 +9 +4 +4 -12 +0 -70 +4 +2 +11 -1 -9	-405 -759 -634 -504 -340 -350 47 278 525 839 1252 1265 1961 2069 1439	-9 -12 -12 -17 +15 +17 +15 +17 +4 +0 -72 -50 +7 +15 -1 -18 +23	-376 -730 -669 -593 -595 -418 -300 -187 -60 64 258 1176 2017 1977 1742 1375 975	-6 -6 -5 -6 -5 +12 +7 +14 +9 +15 -10 -26 -8 +7 +28 +43	-529 -640 -580 -489 -595 -185 -77 181 460 1755 1599 1334 1023 743 518 566	-10 -7 +1 -6 -5 +7 +10 +20 +21 +6 -50 -24 -25 -29 +3 +20 +35 +31 +52 +35 +31 +52
Y tot									3	5 °c								
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00	89 172 183 183 207 259 300 349 373 379 364 290 241 208 172 108 86 60	-4 +1 -4 +8 +5 -9 -2 +0 -2 +0 -2 +0 -2 +1 -3 -3 -3 -1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	407, 410 226 456 456 455 550 658 716 792 806 765 765 688 624 576 500 367 273	-2,-5 -10 -7 +27 +8 -18 -12 +5 +17 +2 -24 +11 +14 +0 -9 -11	15 59 128 247 593 577 746 901 993 1029 995 1023 995 921 820 662 423	-11 -13 +5 +5 +11 +2 +6 -3 +4 -2 -15 -17 -6 +7 +44	-274 -493 -372 -228 -55 -55 574 146 355 578 946 1087 1196 1270 1321 1304 1249 1071	+0 -2 -6 -3 -1 +2 +9 +6 +9 +1 -5 -8 -7 -15 +2 +22	-422 -806 -679 -515 -314 -115 120 350 586 815 1036 1260 1463 1611 1698 1676 1469	+4 +19 +7 -9 -28 -9 -6 +13 +14 +9 -10 +5 -18 +13	-502 -953 -847 -695 -544 -355 -150 71 301 531 793 1089 1408 1688 1884 1944	-8 -13 -2 -10 +8 +11 +15 +14 -11 -19 -17 +3 +5 +2 +10	-518 -1008 -901 -765 -652 -406 -205 377 311 661 1158 1671 2062 2155 1957 1475	-21 -21 -15 -75 +36 +15 +34 +24 -1 -25 -50 -6 -5 -1 +4 +43	-492 -977 -907 -851 -621 -624 -624 -624 -624 -236 -88 -236 -88 1766 1965 1966 1965 1892 1651 1346 1039 762	-4 +8 -10 -14 -15 -4 +50 +44 +29 +20 +74 -47 -47 +17 +22 +20 +11 +12	-451 -878 -879 -734 -620 -493 -372 -237 -99 279 883 1520 1668 1516 1284 1003 773 435	-9 -11 -9 +7 +7 +5 +17 +16 +1 +10 +10 -22 -22 -8 +11 +1 +20 +15 +20 +2
Y tot									5	o °c								
0.75 1.50 2.25 3.00 3.75 4.50 6.75 7.50 8.25 9.00 9.75 11.25 12.05 12.05 14.25 15.00	-66 -113 -96 -73 -49 -48 -82 125 161 170 174 181 166 148 123 111 99 79 42	+13 +10 +01 -112 -2 +13 +13 +15 -3 -4 -13 -5 +2 +15 -5 +16	11 66 82 96 126 126 360 360 360 507 519 520 512 489 444 401 306 231	+9 -19 -16 -1 +14 +11 +18 +11 -6 -6 -7 -12 -14 -11 -8 +19 +19 +24	-121 -216 -162 -58 29 214 374 509 600 621 702 723 724 671 558 400 250	-5 -9 +5 -8 +30 -3 -9 -11 -5 +38 -9 -15 -26 -17 +6 +51 +42	-325 -593 -226 -429 -308 -164 31 194 373 510 656 773 895 966 1026 1015 738	+4 -16 -8 -5 +5 +19 +2 +18 +4 +9 -13 -12 -22 -6 -5 +11 +21	-437 -834 -767 -640 -520 -343 -162 -47 251 427 609 1033 1219 1338 1338 1325 939	-6 -15 +5 -10 +11 +5 +13 +4 +13 -1 +0 -20 -7 -1 -1 -1 -9 -8 +50	-478 -929 -850 -768 -638 -538 -172 11 186 578 629 909 1210 1404 1489	-9 -10 -13 +4 -2 +16 +10 +18 +7 +4 -3 -24 -14 -13 +7 +3 +14	-487 -944 -817 -779 -661 -504 -353 -166 76 294 663 1134 1492 1578 1437	-12 -21 -11 -4 +13 +19 +43 +35 -26 -18 -27 -18 -8 +6 +29	-472 -934 -819 -819 -737 -655 -529 -416 -313 -205 -80 1346 603 1149 1369 1176 1003 855 678	-6 -2 -9 -12 -13 +11 +7 +23 +37 +34 +10 -36 -66 -44 +23 +20 +15 +10	-449 -870 -804 -745 -645 -525 -404 -292 -193 -88 7 425 900 1008 650 658 573 86	-2 -7 -14 +2 +2 +3 +2 +20 +20 +18 +20 +29 +18 -21 -30 -29 -9 -9 +24 +38 +31 +22 +7

Table 5. The stepwise values of $\Delta H_{j}^{\,\circ}$ with their corresponding standard deviations for the various rare earth diglycolates at 5, 20, 35, and 50°C. At each temperature the standard deviations Sig~Q in the $Q_{\rm corr}$ values are also given.

Temp.:		5°C				20°C		
Metal ion	$\frac{-\Delta H_1^{\circ}}{\text{keal mol}^{-1}}$	$rac{-\varDelta H_2^\circ}{\mathrm{keal\ mol^{-1}}}$	$\frac{-\Delta H_3^{\circ}}{\mathrm{kcal\ mol^{-1}}}Q$	$Sig \times 10^3$ cal	$\frac{- \varDelta H_1^{\circ}}{\text{keal mol}^{-1}}$	$\frac{-\varDelta H_2^{\circ}}{\mathrm{keal\ mol^{-1}}}$	$\frac{-\Delta H_3^{\circ}}{\text{keal mol}^{-1}} Q$	$Sig \times 10^3$ cal
Pr Sm Gd Tb Dy Ho Er Yb	1.673 ± 0.005	2.833 ± 0.009 2.468 ± 0.005 1.658 ± 0.006 0.538 ± 0.007	$\begin{array}{c} 1.033 \pm 0.004 \\ 1.339 \pm 0.009 \\ 1.982 \pm 0.007 \\ 2.598 \pm 0.014 \\ 3.350 \pm 0.008 \\ 4.140 \pm 0.013 \\ 4.507 \pm 0.012 \end{array}$	5 5 8 6 14 9 12 11 20	$\begin{array}{c} 0.757 \pm 0.008 \\ 1.160 \pm 0.015 \\ 0.476 \pm 0.010 \\ -0.544 \pm 0.009 \\ -1.084 \pm 0.009 \\ -1.382 \pm 0.009 \\ -1.466 \pm 0.017 \\ -1.311 \pm 0.016 \\ -1.176 \pm 0.022 \end{array}$	$\begin{array}{c} 1.825 \pm 0.012 \\ 2.361 \pm 0.007 \\ 2.625 \pm 0.004 \\ 2.397 \pm 0.004 \\ 1.866 \pm 0.004 \\ 1.120 \pm 0.006 \\ 0.360 \pm 0.008 \end{array}$	$\begin{array}{c} 1.070 \pm 0.015 \\ 1.482 \pm 0.007 \\ 2.251 \pm 0.007 \\ 2.976 \pm 0.005 \\ 3.793 \pm 0.007 \\ 4.449 \pm 0.013 \\ 4.489 \pm 0.016 \end{array}$	9 17 10 9 9 9 16 17 22
Diglycolic acid	-0.143 ± 0.010	0.988 ± 0.030	_	-	-0.644 ± 0.010	0.420 ± 0.030		

Temp.:		$35^{\circ}\mathrm{C}$				$50^{\circ}\mathrm{C}$		
Metal ion	$\frac{-\Delta H_1^{\circ}}{\text{keal mol}^{-1}}$	$\frac{-\Delta H_2^{\circ}}{\mathrm{keal\ mol^{-1}}}$	$\frac{- \Delta H_3^{\circ}}{\text{keal mol}^{-1}}$	$rac{Sig}{Q imes 10^3}$	$\frac{-\Delta H_1^{\circ}}{\text{keal mol}^{-1}}$	$\frac{-\Delta H_2^{\circ}}{\mathrm{keal\ mol^{-1}}}$	$\frac{-\Delta H_3^{\circ}}{\text{keal mol}^{-1}} \ \underline{Q}$	$Sig \times 10^3$ cal
Pr Sm Gd Tb Dy Ho Er Yb	$\begin{array}{c} 0.284 \pm 0.004 \\ 0.658 \pm 0.011 \\ -0.034 \pm 0.016 \\ -0.984 \pm 0.007 \\ -1.468 \pm 0.012 \\ -1.788 \pm 0.012 \\ -1.868 \pm 0.028 \\ -1.683 \pm 0.026 \\ -1.599 \pm 0.016 \end{array}$	$\begin{array}{c} 1.593 \pm 0.010 \\ 2.127 \pm 0.010 \\ 2.224 \pm 0.004 \\ 1.830 \pm 0.007 \\ 1.340 \pm 0.007 \\ 0.730 \pm 0.013 \\ 0.136 \pm 0.015 \end{array}$	$\begin{array}{c} 1.225 \pm 0.01 \\ 1.714 \pm 0.01 \\ 2.651 \pm 0.00 \\ 3.450 \pm 0.01 \\ 4.260 \pm 0.01 \\ 4.815 \pm 0.02 \\ 4.792 \pm 0.02 \end{array}$	0 13 3 15 4 7 0 13 0 12 4 27 9 30	$\begin{array}{c} -0.234 \pm 0.011 \\ 0.081 \pm 0.016 \\ -0.602 \pm 0.029 \\ -1.479 \pm 0.015 \\ -2.040 \pm 0.021 \\ -2.222 \pm 0.016 \\ -2.278 \pm 0.033 \\ -2.158 \pm 0.032 \\ -2.050 \pm 0.030 \end{array}$	$\begin{array}{c} 1.361 \pm 0.014 \\ 1.759 \pm 0.020 \\ 1.711 \pm 0.010 \\ 1.424 \pm 0.012 \\ 0.864 \pm 0.010 \\ 0.374 \pm 0.019 \\040 \pm 0.019 \end{array}$	$\begin{array}{c} 1.370 \pm 0.015 \\ 1.955 \pm 0.025 \\ 3.057 \pm 0.012 \\ 3.893 \pm 0.018 \\ 4.670 \pm 0.016 \\ 5.111 \pm 0.034 \\ 5.048 \pm 0.042 \end{array}$	14 22 12 17 13 25 28
Diglycolic acid	-1.089 ± 0.010	0.027 ± 0.030			-1.641 ± 0.010	574 ± 0.050	_	_

The increase of $Sig~Q_{\rm corr}$ with increasing temperature is another characteristic feature. This is caused by the decrease in the sensitivity of the thermistor with increasing temperature and hence a decreased accuracy. This has been observed earlier. It should be noticed, that errors discussed here are all very small.

In Fig. 1, Δh_v has been plotted as a function of \overline{n} for the praseodymium diglycolate systems at four temperatures. The Q-values, used for the calcula-

Table 6. The stepwise enthalpy changes for the various rare earth diglycolates as functions of temperature: $\Delta H_i^{\circ} = A + BT + CT^2 + DT^3$. The number of figures in the constants A - D have been chosen in order to describe the experimental data within 1 cal at the four different temperatures.

	ΔH_1°					$\varDelta H_{2}{}^{\circ}$				
Constants	- A	В	$-C \times 10^3$	D×10 ⁶	- A	В	$-C \times 10^3$	D×10 ⁶		
Metal ion	kcal mol ⁻¹	kcal mol ⁻¹ K ⁻¹	keal mol ⁻¹ K ⁻²	$\frac{\mathrm{kcal}}{\mathrm{mol^{-1}}\mathrm{K^{-3}}}$	keal mol ⁻¹	kcal mol ⁻¹ K ⁻¹	$rac{ ext{keal}}{ ext{mol}^{-1} ext{ K}^{-2}}$	kcal mol ⁻¹ K ⁻³		
\mathbf{Pr}	137.928	1.306856	4.237067	4.691358	174.819	1.694176	5.552124	6.123457		
Sm	119.900	1.142185	3.759520	4.246914	159.179	1.505553	4.839253	5.234568		
Gd	68.001	0.631253	2.062471	2.370370	333.248	3.280608	10.887279	12.098765		
Tb	90.724	0.869571	2.845244	3.209877	182.606	1.774823	5.914311	6.666667		
Dy	63.978	0.604455	1.956622	2.22222	14.249	0.052939	0.056764	0.049383		
Ho	74.458	0.706580	2.266098	2.518519	59.668	0.467373	1.298098	1.283951		
\mathbf{Er}	69.661	0.648694	2.036622	2.22222	179.921	1.673979	5.280036	5.629630		
$\mathbf{Y}\mathbf{b}$	101.812	0.984906	3.217138	3.604938	88.148	0.836912	2.686880	2.913580		
Lu	41.837	0.384392	1.216071	1.382716	66.168	0.572103	1.664338	1.629630		
Diglycolic acid	221.569	2.178046	7.203716	8.049383	307.695	3.002863	9.867164	10.913580		

	∆H³°							
Metal ion	$\frac{-A}{\text{keal}}$ mol^{-1}	$\frac{B}{\mathrm{keal}}$ $\mathrm{mol^{-1}K^{-1}}$	$\frac{-C \times 10^3}{\text{keal}}$ $\text{mol}^{-1} \text{K}^{-2}$	$\frac{D\times 10^6}{\mathrm{kcal}}$ $\mathrm{mol^{-1}\ K^{-3}}$				
Pr Sm Gd Tb Dy Ho Er Yb	212.924 180.570 114.090 175.850 170.854 100.000 166.338 519.676	2.105303 1.775654 1.121153 1.738528 1.712268 1.031351 1.667354 5.090126	6.922738 5.821404 3.672267 5.72000 5.729084 3.571253 5.642418 16.695982	7.555556 6.320988 3.950617 6.172840 6.271605 4.000000 6.271605 18.172840				

tions, have been corrected for both the heats of dilution and protonation. The smooth curves have been calculated from the enthalpy changes given in Table 5 and the stability constant given in the preceding publication. The radii of the circles in the figure do not represent error limits; the errors estimated from the experiments are approximately three times smaller.

The enthalpy changes at 25°C, obtained from the temperature functions

in this study, agree fairly well with those determined earlier.6 The deviations

Metal	$_ _ _ _ _ C_{\mathbf{P_1}} ^{\circ}$	${\it \Delta C_{ m P2}}^{\circ}$	${\it \Delta C_{ m P3}}^3$
ion	$\overline{\mathrm{cal}\ \mathrm{mol^{-1}}\ \mathrm{K^{-1}}}$	$ m cal\ mol^{-1}\ K^{-1}$	$\overline{\mathrm{cal}\;\mathrm{mol^{-1}}\;\mathrm{K^{-1}}}$
Pr	31.4	16.4	- 7.8
\mathbf{Sm}	33.0	15.9	-10.0
Gd	33.5	15.0	-15.1
$\mathbf{T}\mathbf{b}$	29.0	26.0	-26.1
Dv	30.3	32.3	- 31.5
$_{\rm Ho}^{\rm Dy}$	26.9	35.7	-31.5
\mathbf{Er}	26.9	26.8	-24.7
$\mathbf{Y}\mathbf{b}$	27.9	11.7	-19.4
Lu	28.0	14.2	- 8.2
Diglye. acid	29.1	29.5	_

Table 7. The stepwise heat capacity changes ΔC_{pj}° at 25.0°C. The errors in the values given are approx. 2 cal mol⁻¹ K⁻¹.

Table 8. Stability constants, β_i , at 20°C recalculated from data in Ref. 9.

Constants	$\frac{\beta_1 \times 10^{-5}}{M^{-1}}$	$\frac{\beta_2 \times 10^{-10}}{\mathrm{M}^{-2}}$	$\frac{\beta_3 \times 10^{-13}}{M^{-3}}$
Metal ion	M ⁻¹	M ⁻²	M^{-3}
Gd	3.09	1.08	1.66
Tb Ho	$2.64 \\ 2.49$	$\frac{1.20}{1.18}$	$\begin{array}{c} 2.56 \\ 2.91 \end{array}$
Er	2.95	1.44	2.55
Lu	6.21	5.66	2.64

in the over-all ΔH_2° -values between the two studies are all within three standard deviations (3 σ). The deviations in the over-all ΔH_3° -values, however, are larger and of the magnitude 0.3 kcal mol⁻¹.

Determination of the $\Delta H^{\circ}(T)$ functions. The temperature dependences of the stepwise enthalpy changes for the systems investigated have all been described by the same type of relations (eqn. 2). The experimental enthalpy data could not be fitted to polynomials of lower than third degree with preservations of the accuracy given by the experiments. The corresponding heat capacity data are thus described by second degree polynomials. Plots of ΔC_{pj} vs. T show in most cases minima around 30°C. It may be remarked that even very slight errors in the enthalpy changes are enough to cause a substantial shift of the position of the inflection points of the $\Delta H(T)$ -curves. The estimated errors in the temperature dependence of the various ΔC_p -values are thus fairly large. On the other hand, the errors in the averages of ΔC_p in the given temperature range are smaller and of the magnitude 2 cal mol⁻¹ K⁻¹.

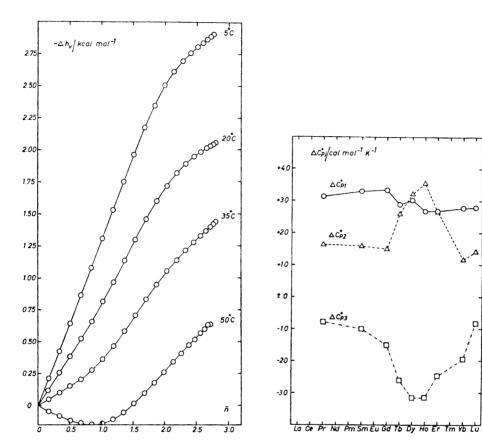


Fig. 1. The total molar enthalpy change, Δh_v , as a function of the average ligand number, \bar{n} , for the praseodymium digly-colate system at 5, 20, 35, and 50°C.

Fig. 2. The stepwise heat capacity changes, ΔC_{pj}° , at 25°C for the formation of rare earth diglycolate complexes.

DISCUSSION

The changes in enthalpy and entropy for the reactions investigated show fairly large variations with temperature. The temperature dependence of the various stepwise enthalpy changes is, for instance, illustrated by the corresponding heat capacity changes shown in Fig. 2. The variations of ΔG_j° , ΔH_j° , ΔS_j° , and $\Delta C_{p_j^{\circ}}$ with the atomic number of the central ion are changed slightly with a change in temperature, e.g. both the minimum in ΔH_2° and the maximum in $\Delta C_{p_2^{\circ}}$ are shifted towards the elements with smaller atomic numbers when the temperature increases. There are large differences between the various stepwise complex formation reactions, which is most obvious from the $\Delta C_{p_j^{\circ}}$ vs. Z values, shown in Fig. 2. $\Delta C_{p_1^{\circ}}$ is fairly constant for all the elements investigated, while the values of $\Delta C_{p_2^{\circ}}$ pass through a pronounced

maximum. This maximum occurs in that part of the rare earth series, where the change in ΔH_2° is also largest. We suggest, for reasons outlined in the preceding communication, that the maximum in the plot of ΔC_{p2}° vs. Z is due to the presence of a hydration equilibrium of the type (1) for the complex MA₂. On the other hand the variation of ΔH_1° , which is about as large as the variation of ΔH_2 , is not reflected in ΔC_{p1}° . Hence, no equilibrium of the type (1) seems probable for the formation of the first complex and the change of $\Delta H_1^{\circ}(Z)$ cannot be explained in the same way as the corresponding change of ΔH_2° (Z) (cf. part XI, p. 1219). This fact does not exclude gradual changes in the structure of the hydration shell, neither for the central ion nor for the first complex (as indicated by the variation of ΔH_1° and ΔS_1°). However, for each element only one species of both M and MA must be dominating.

for each element only one species of both M and MA must be dominating. The maximum value of $\Delta C_{p_i}^{\circ}$ for Ho is about 20 cal mol⁻¹ K⁻¹ higher than the approximately constant values of $\Delta C_{p_i}^{\circ}$ at the beginning and the end of the lanthanoid series. This is of the expected magnitude if the change is caused by a reaction (1) in which K for Ho equals unity and ΔH° is 2 kcal mol⁻¹.

The variation of $\Delta C_{p_i}^{\circ}$ with Z is opposite that of $\Delta C_{p_i}^{\circ}$. The complex MA₃ is coordinatively saturated by the nine donor atoms from the tridentate ligands A. Hence no hydration equilibrium of the type (1) seems probable for this species. The observed behaviour of $\Delta C_{p_i}^{\circ}$ vs. Z is then a natural result of the stepwise formation of the complex MA₃ from MA₂ (aq) if it is again supposed that MA₂(aq) is a mixture of two species of comparable concentrations when M is an element between Gd and Yb in the lanthanoid series.

Spectra of rare earth diglycolate and dipicolinate complexes. Spectra of solutions, containing different rare earth complexes showed only small variations with temperature (see Fig. 3). Hence, no positive evidence for an equilibrium of the type (1) can be obtained from spectral data alone.

The temperature dependence of $\Delta C_{p_i}^{\circ}$. From the model presented above one would expect a positive contribution to $\Delta C_{p_i}^{\circ}$ from the equilibrium (1). This contribution passes through a maximum in a given temperature range for those elements, where the constant K is near unity. The values of $\Delta C_{p_i}^{\circ}$ in the present investigation are dependent of temperature—we have described the temperature variation of the various ΔH_i° -values with a polynomial of third degree. Because of the small number of temperatures investigated, it is difficult to decide whether the temperature dependence of ΔC_{p_2} for say, Ho is different from that of Pr and Lu. However, the data indicate a contribution from (1) to the temperature variation of ΔC_{p_2} for Ho; a further discussion will be given in a following communication.

Theoretical models. The interpretation of the experimental thermodynamic quantities is facilitated if one has access to a model. Various theoretical attempts have been made to describe the thermodynamics of complex formation and protonation reactions. Gurney ¹¹ and Hammet ¹² explained, e.g., the minimum in log K = f(T) for protonation reactions by assuming that the changes in free energy, enthalpy, and entropy were sums of terms, depending on electrostatic, covalent and cratic effects. ¹¹ The only temperature dependent term, according to this model is that due to electrostatic effects, the temperature variation of which is given by the temperature variation of the macro-

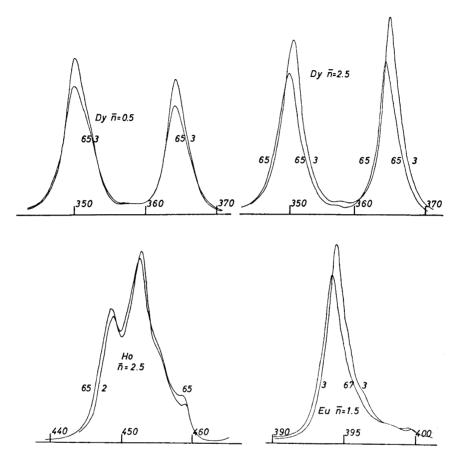


Fig. 3. Absorption spectra at the temperatures 2-3 and $65-67^{\circ}\mathrm{C}$ for some rare earth diglycolate solutions at varying values of \bar{n} . The concentrations of the solutions have been chosen so as to give a maximum absorbance of about 0.5. The absorption curves obtained at 25 and 45°C have been left out for clarity. The wave length is given in nm.

scopic dielectric constant, ε , of the medium.¹² Around room temperature, the dependence of temperature can be expressed by the empirical relation $\varepsilon = \varepsilon_0 \times \mathrm{e}^{-T/\theta}$ for several common solvents (Ref. 11, pp. 16 and 28). The model has lately been used by Degischer and Nancollas ¹³ and Anderegg ¹⁴ for a number of complex formation reactions.

The following relation between the heat capacity change and the entropy change is valid, provided that all interactions are electrostatic.

$$\Delta C_{p} = (\Delta S - \nu \times 7.9) \times T/\theta \tag{3}$$

If the interactions are covalent only, the value of ΔC_p is equal to zero (see Ref. 14, p. 1859, for further details).

Acta Chem. Scand. 26 (1972) No. 3

The theory can roughly describe the magnitudes of ΔC_p ,° for the reactions in this study, if one assumes that the interactions are mainly electrostatic. The theory can on the other hand neither describe the variations of ΔC_{p_j} ° through the lanthanoid series nor the fact that ΔC_{p_i} ° is negative. Hence it might be concluded that the quantitative success of the model is not too impressive. This might in part be due to the presence of complicating factors, such as changes in hydration, which are not included in the original model.

A quantitive explanation of the observed variations in ΔC_{pj}° through the lanthanoid series (or for other complexation reactions) cannot be obtained from the theoretical electrolyte models presently available. Hence, all interpretations are necessarily qualitative and must be made with full insight into the limitations of the discussions, based on the conversion from the macroscopic to the molecular level. A publication of Holzer and Emerson ¹⁵ is in this part instructive reading. Additional information on the causes to the observed variations in thermodynamic functions may be obtained by determination of the partial molal heat capacities for the ions, participating in the reactions. Work of this type is in progress and will be published in a following communication in this series.

Hydration equilibria and structure. The prevalent coordination numbers of the tervalent lanthanoids are 8 and 9 in the solid state. There are many reasons to believe, that this is the case in solution as well. The complex MA₃ is surrounded by nine coordinated oxygen atoms from three ligands. Hence geometrical reasons exclude hydration equilibria of the type (1) for MA₃. The situation is different in the complex MA₂. From the known geometry of the eight- and nine-coordinated complexes ¹⁷ one expects both ligands to occupy positions in the same half of the coordination sphere with remaining coordination sites occupied by water. The configuration of the complex is thus similar to the one suggested by Hoard et al.¹⁷ for EDTA-complexes. The similarity in geometry of MA₂ and MEDTA may be another reason for the presence of the same type of hydration equilibria in both complexes.

Note added in proof. We have recently measured the ΔC_p values for the reaction: $\mathrm{MgEDTA^2-+M^3^+ \to MEDTA^- + Mg^{2^+}}$, where $\mathrm{M^3^+}$ denotes various rare earth ions. The ΔC_p values show a pronounced maximum at europium, i.e. in the range where the change in ΔH° from one element to another is largest. We feel that these data—in connection with the work of Geier et al.—give an additional strong support to the hypothesis of hydration equilibria among some rare earth complexes.

Acknowledgements. We wish to express our gratitude to Mrs. Gunilla Johnmark for skilful and considerable help with this work. We are also indebted to professor Ido Leden for many stimulating discussions. This project has been sponsored by a grant from the Swedish Natural Science Research Council.

REFERENCES

- Martell, A. E. and Sillén, L. G. Stability of Metal Ion Complexes, 2nd Ed., Special Publication, The Chemical Society, London 1964.
- 2. Grenthe, I. and Ots, H. Acta Chem. Scand. 26 (1972) 1217.
- 3. Geier, G., Karlén, U. and v. Zelewsky, A. Helv. Chim. Acta 52 (1969) 1967.
- 4. Anderegg, G. and Wenk, F. Helv. Chim. Acta 54 (1971) 216.
- 5. Grenthe, I., Ots, H. and Ginstrup, O. Acta Chem. Scand. 24 (1970) 1067.

- 6. Grenthe, I. Acta Chem. Scand. 17 (1963) 2487.
- 7. Arnek, R. Arkiv Kemi 32 (1970) 81.
- 8. Grenthe, I. and Williams, D. R. Acta Chem. Scand. 21 (1967) 341, 347.
 9. Grenthe, I. and Tobiasson, I. Acta Chem. Scand. 17 (1963) 2101.
 10. Grenthe, I. and Hansson, E. Acta Chem. Scand. 23 (1969) 611.
- 11. Gurney, R. W. Ionic Processes in Solution, Dover Publications, New York 1962. 12. Hammet, L. P. J. Chem. Phys. 4 (1936) 613. 13. Degischer, G. and Nancollas, G. H. J. Chem. Soc. 7 (1970) 1125.

- Anderegg, G. Helv. Chim. Acta 51 (1968) 1856.
 Holzer, A. and Emerson, M. F. J. Phys. Chem. 73 (1969) 26.
 Lippard, S. J. In Cotten, F. A. Progr. Inorg. Chem. 8 (1967) 109.
 Hoard, J. L., Byunkook, L. and Lind, M. D. J. Am. Chem. Soc. 87 (1965) 1612.
- 18. Albertsson, J. Acta Chem. Scand. 24 (1970) 3527.

Received July 6, 1971.