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A Lattice Model for Ion Exchangers

Monte Carlo Computations for Salt Sorption in a Simplified Model

EYVIND ALVER and DAG VAULA

Chemical Institute, University of Bergen, N-5000 Bergen, Norway

The thermodynamic properties of a simplified lattice model of an
ion exchanger consisting of a number of independent subsystems are
described. The free energies of the subsystems are computed by a
Monte Carlo method, and the chemical potential of salt in the model
is calculated statistically. The predicted limiting sorption of salt is
found to agree with some general experimental observations.

The great variety of models which have been proposed for ion exchangers
may tentatively be divided into two main types, the “quasi solution”
(q.s.) models and the “structural electrostatic’” (s.e.) models.! A preliminary
report on a third type, a lattice model, is given in this paper.

Many properties of polyelectrolyte gels are not radically different from
corresponding properties of concentrated electrolyte solutions. In the q.s.
models this similarity is acknowledged by treating the gel as a solution in an
elastic bag. The bag is permeable to the solvent, to counter ions and co-ions,
but impermeable to the ‘“fixed” ions. These correspond to the fixed ionic
groups in the gel, and usually they are represented by uni- or poly-valent
organic ions, approximating bits of the real crosslinked structure. The salt
sorption can then be treated as a “Donnan equilibrium’ between the external
solution and the model solution. All reasonable q.s. models show the same
limiting sorption behaviour in a dilute solution of a 1,1-electrolyte (or n,n-
electrolyte)

m = K,(a.')? (1)

where m is the molality of sorbed salt, @.’ is the mean ionic activity in the
external solution with molality m’ and K, is a temperature-dependent coeffi-
cient which is determined mainly by the molality of fixed charges in the swollen
resin.
In extremely high dilution
m = K ,(m')? @)

which may be called an ideal Donnan sorption isotherm.
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1178 ALVER AND VAULA

For some ion exchanger/salt solution systems the sorption behaviour have
indeed been reported to be adequately represented by simple model solutions.?
The majority of investigations have, however, led to isotherms which deviate
significantly from eqn. (1) in dilute solutions3 In many cases the isotherm
(for 1,1-electrolytes) may approximately be represented by 4

m=Ky(a.')* (3)

with « in the range 1.4 to 1.7 for dilute solutions. The internal mean activity
coefficient y. as defined by
ye'm m_=(y.)(m’)? 4)

will then tend to zero with decreasing m’. (For a cation exchanger, m_=m
and m = m+m;, where my is the molality of univalent fixed ions.)

In constructing the q.s. model it has not been taken into account that the
bulky network of organic groups must to some extent restrict the possible
configurations of ions and ionic groups relative to a free solution. Probably
the most important consequence is that the fixed ions are approachable from
one side only, and one gets an enhanced probability of ionic distributions
of the type

matrix-X---C---C---X-matrix

where X represents a fixed ion and C a counter ion.

Different structural restrictions are accounted for in the various ¢structural
electrostatic” models. This term is introduced here because the models referred
to derive their special properties from the ionic distributions which are deter-
mined by the electrostatic forces and the postulated structural restrictions.

Swelling, selectivity, and to some extent sorption behaviour have been
semiquantitatively described by models of this type. Even for severely simpli-
fied structures, however, the mathematical derivations become prohibitively
complex. Hence it is necessary to introduce approximations with somewhat
unpredictable effects, particularly on limiting laws like eqn. (2). The lattice
model, as developed below, may be better suited for predicting the effect of
various physical simplifications without introducing any serious mathematical
approximations, at least in the case of limiting sorption behaviour.

THE LATTICE MODEL

The lattice model is an assembly of M non-interacting and distinguishable
subsystems. The whole system may be pictured as a three-dimensional lattice.
Each subsystem, or lattice site, is constructed as a simplified model of a micro-
scopic part of a poly-electrolyte gel. This submodel must retain some essential
structural properties of the complete resin network. It is assumed that counter-
ions, co-ions, and neutral molecules may diffuse between a subsystem and its
surroundings. The number of mobile ions and neutral molecules of different
kinds in a subsystem may then be used to define different “subsystem states.”
If all subsystems are equal, each containing F univalent fixed ionic groups
and each with a number s of possible states denoted by j=0,..., s—1, then the
canonical partition function for the whole assembly may be written as
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s—1 q_K,'
7

Q=2MT] ()

g i=0 Kj!

Here g; is the partition function for a subsystem in state No. j and K is the
number of subsystems in this state for a given assembly configuration. The
sum is to be taken over all possible assembly configurations g={K,, ..., K, ;}
consistent with given total numbers N, of mobile ions or neutral molecules
of each kind and a constant number I of subsystems.

A SPECIAL CASE OF THE LATTICE MODEL

The present discussion will be restricted to a very simplified example of
the general lattice model. First, the subsystem is pictured as a spherical
cavity with a diameter approximately equal to the estimated pore diameter
of a typical ion exchanger. F' negative ionic groups are represented by a con-
stant charge density on the cavity surface. The well-known ““primitive model”
is used for the internal solution of counter-ions and co-ions, 7.e. these ions are
represented by hard, charged spheres in a continuous medium. Both types of
mobile ions are assumed to be uni-valent with equal radii. Secondly, only
four states are considered important:

0. A “reference’” state with F' counter-ions and no co-ions.
1. A state with F +1 counter-ions and no co-ions.

2. A state with F counter-ions and one co-ion.

3. A state with F +1 counter-ions and one co-ion.

Thus relative to state 0, states 1, 2, and 3 have an extra cation, anion, and
pair of ions, respectively.

The main purpose of the simplified model is the prediction of limiting
sorption behaviour, in the present case for 1,1-electrolytes. Some approxima-
tions which are implied by the simplifying assumptions must be discussed
from this viewpoint.

Constant subsystem dimensions imply constant swelling. Experimentally
this is always observed in sufficiently dilute solutions, but the upper con-
centration limit for effectively complete swelling depends on the rigidity of the
resin matrix.

Adoption of the “primitive electrolyte model” implies that the thermo-
dynamic properties of the system are determined essentially by the available
ionic configurations. Thus, the number of solvent molecules is not an explicit
model parameter and must if necessary be introduced by a separate assump-
tion.

Finally, the main reason for restricting the allowed subsystem states to
only four ionic combinations is the ensuing simplification of the statistical
formulae which permits a complete numerical characterization of the model.
At low concentrations, the most probable ionic combinations omitted in the
specialized model would be those with a small deficit of counter-ions relative
to the reference state. Preliminary calculations indicate, however, that inclu-
sion of these states would not have any important effects on the predicted
sorption behaviour.
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Utilizing eqn. (5), the partition function for the specialized lattice model
may now be written as:

QM,N,T)= ZM'M SQ (6)
Y5 KK KJK,T ~ <%

The sum is to be taken over all configurations g={K,,K, K, K} satisfying
the restrictions

Ky+ K+ K, +K;=M (7)
K,=K, (8)
K,+K,=N (9)

Here, eqn. (8) is the condition of electroneutrality for the whole assembly,
while N in eqn. (9) is the total number of sorbed “‘salt molecules’ in the lattice.

The largest term @, in the expression for @ may in the thermodynamic
limit, M - o0, be found from

dlnQ,
=0 10
(38.") s o

because the eqns. (7) — (9) define three of the K’s in terms of the fourth, and
this may be chosen as K,. When @, from eqn. (6) is inserted in eqn. (10) and
eqn. (10) is solved, one obtains an “equlhbrlum equation’:
K,\K, _ Nee def —b
KoKy~ 440

(11)

This equation together with eqns. (7)—(9) define the configuration
g*={Ky*,K,* K,* K3*} which maximize @,.
When solved, these equations yield:

KF=Kp= —M+V P4 -1)N(M - N) (12)
2(671-1)

Ky*=M—-N-K,* (13)

Kg*=N—K,* (14)

These values may be inserted in the expression for @, (eqn. 6), and all
thermodynamic properties of the lattice model can then be derived from the
corresponding Helmholtz free energy function

A= —kT In Q,(M,N,T) (15)

where @, has been substituted for the whole sum in eqn. (6). The equilibrium
salt sorptlon, for instance, is determined by

um)=(5y),=wm) (16)
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where p(m) is the chemical potential of salt in the model at molality m and
4’ (m’) is the corresponding potential in the external solution.*

The derivative in eqn. (16) may conveniently be calculated from an ex-
pression derived from, eqn. (6):

In Quy=M1InM— zK*lnq —InK*) (17)

by using K*(M,N), defined by eqns. (12)—(14), as parameters. This leads
to the simple relation:
K,*K,

[T 1)

ulkT =In ‘Joq +1In 22

which may be shown to be a special case of a formula valid for more general
lattice models.

When the expressions for K;* from eqns. (12) and (13) are inserted in eqn.
(18) together with the abbrevations

q;(g? = (19)
2671 - 1)=p(T) (20)
N/M=9 (21)
one gets ) B
(0T = — 26T In w4 24T 1n 20~ 1+V1+2p0(1-0) (22)

(p+2)(1-9)

This equation defines y as a function of the internal salt concentration because
the latter is related to 6 by
0

Here, N, is Avogadro’s constant and v is the subsystem volume v=nd?/6.
In the following, ¢ rather than m will be used as concentration variable, be-
cause ¢ is more directly related to the statistical formulae. The internal salt

* p(m) as defined by eqn. (16) does not correspond strictly to the ordinary chemical potential
of salt in a real gel as defined by
def /04 gel
Il =

TN_) V.T,N,N_
where both the amount of resin (V) and the amount of water (N,,) arekept counstant, but rather to

dei A 94ger
ON V,T,N_&

where ¢ is some measurable dielectric coefficient of the gel. In the lattice model, ¢ is the effective
DE-coefficient of the medium between two ions. The physical interpretation of this quantity
in a real system is somewhat ambiguous, but for all reasonable interpretations the difference
between (16b) and (16a) will be insignificant for the present purpose. u as defined by eqn. (16)
may thus be regarded as corresponding to the ordinary potential defined by eqn. (16a).

(16a)

Hse (16b)
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molality m is not explicitly defined by the model parameters but is related
to ¢ by
m=c/g, (24)

where g, is the mean density of water in the subsystems (pores). At low
concentrations, g_ is a constant, and thus will not alter the form of the limiting
sorption behaviour.

For sufficiently small values of 6, eqn. (22) may be rewritten by expanding
the square root in a power series and putting — 2k7 In w= »(T).

- ‘I 2 Py P, ... 5
u=n(T)+2k7 ln1_6<l 20+20+ > (25)

Numerical evaluation of the parameter p from realistic model properties
indicates that this expansion is valid up to 6-values which correspond to high
internal concentrations. In a hypothetical ideal case with “indifferent internal
equilibrium”, b in eqn. (11) has the value 1, and p=0 (eqn. 20). Then eqn.
(25) is reduced to

1= Higen = N(T) + 2kT In l—f—g (26)

which differs from a Langmuir isotherm only by the factor 2.

In the general, non-ideal case, the equilibrium salt sorption is determined
by eqn. (16). As quantum effects are neglected in the primitive model, only
the configurational parts of chemical potentials, partition functions efc. are
relevant. The relevant expression for the chemical potential of salt in the
external solution is then

W =2kT lnll;yi’ (27)

or
W' =2kTn N,a,' (28)

where @' =c'y.’ now is the mean ionic activity on a molarity basis.
Eqns. (22) and (28) may be inserted in eqn. (16), giving an explicit sorption

equation
20—-1+V 14+2p6(1—-0
(p+2)(1-10)

=N, wa.’ (29)

Expansion of the left-hand expression in a power series, followed by inversion
and introduction of ¢ from eqn. (23) finally gives an explicit expression for the
internal salt concentration

w ! w ! w ’
o= 0 — (1—- g)NAw(ai 2+ p 3(1— g)NAZw?(aJE B+ (30)

This equation will be discussed in connection with the evaluation of its
parameters.
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THE CHARGING PROCESS

The thermodynamic properties of the present model are determined by
the partition functions g¢; through their combinations in parameters like
w and p. From the expressions for these parameters it may be seen that only
ratios between partition functions are required, corresponding to differences
between free energies 4,= —kT In g¢,. For the present model it was found
feasible to compute these differences by numerical evaluation of a “Guntel-
berg” charging process.

In this process, a system is brought from a state ‘i > to a state "’ with
one more ion by introducing the extra ion in two steps:

1. An ‘“uncharged ion” is added in the form of a hard sphere (with ¢ equal
to the surrounding medium).

2. This ion is given full charge by increasing a charging parameter A from
0 to 1 in small steps.

If A; and g, are interpreted as configurational properties, the free energy
of a subsystem with a partially charged extra ion can be expressed by

4,(2)=~kTIngqA) = —kT In fy- -v-je“U(‘)/"T dry---drg; (31)
Here v is the volume of the subsystem, U(1) is the potential energy of the ionic

configuration {rl, rL i}, and L, is the total number of mobile ions in a sub-
system in state ‘5"’ .The statistical factor J;which accounts for the indistinguish-
ability of ions of the same type is determined by the number L, of ions of

each type “k’":
fi= l/f;[ij! (32)

For simplicity this factor has been omitted in the following equations, but will
be reintroduced in the final numerical evaluations.

The change in free energy in the two steps indicated above may now be
discussed separately:

4;—4,=[4;(A=0)-A4,]+[4,(A=1)—-4;(1=0)] (33)

The first bracket corresponds to the loss of free energy when an uncharged
particle is introduced into a cavity in state “¢”’. It may be interpreted by
means of the “free volume’ for such a particle in state <“¢’’:

def
(44,); = 4;(A=0)—4,= ~kT In V/ (34)

For a dimensionless particle, V=V would be that part of the cavity volume
which is not occupied by ions. "For 'a hard, uncharged sphere with the same
diameter d as the ions, ¥, may be approximated by

V/_—_v—(Lj—l)%noP (35)
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if the cavity is not too crowded by free ions and these do not form stable
aggregates.*
The second bracket in eqn. (33) corresponds to an electrostatic charging
process:
1
dA4,(A
(44),= A(h=1) - A(a=0) = [ 25D

o

da (36)

Eqn. (31) gives
0U(4) e UW/AT ™
24,0) [ e e

j _ <U (/1)> (37)
02 q; TN\ 04
where the brackets indicate an ensemble average and the index in L, has

been dropped. The expression above has a simple interpretation because the

energy U(4) is a sum of ionic pair potentials:
L-1

U= 2 wuy+ izZI Ui (38)

i<k<L

Only the last sum, which involves the extra ion with number L, contains the
charging parameter 4, and has the form

RS 2z €%
Y= 2, dmer, (89)
Hence
oUA) _ u(d)
=T 0
and eqn. (36) becomes
P oda
(44;)y= [ u(h) 5 (41)
0

where w(A) is that part of the potential energy which involves the extra,
partially charged ion. Eqn. (41) is analogous to the wellknown expression by
Giintelberg, but has a different interpretation because of the limited number
of ions in the present case.

Eqns. (34) and (41) may be generalized to subsystems differing in ionic
content by two or more ions. The extra energy u(4) will then be a sum of
expressions similar to eqn. (39), one for each extra ion, and V; will be a product
of free volumes for each extra uncharged sphere.

MONTE CARLO PROCEDURE

For the present model it was found expedient to perform all charging
processes from the reference state, i.e. from state 0 to states 1, 2, and 3, using
the generalized versions of eqns. (34) and (41) for state 3.

*Eqn. (31) or even V/=wv should be sufficiently accurate with the present model parameters
and for the present purpose. If necessary, however, V1|V, may be computed numerically in a

fashion similar to that for step 2 by increasing the diameter d gradually from zero to its final
value.
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In each case the average extra energy u(i) was computed for small in-
crements in A by Metropolis’s Monte Carlo procedure.® This method has been
widely used in investigations on models for various thermodynamic systems.”
Successive configurations of the given model system are generated on a com-
puter in such a pseudo-random manner as to constitute a Markov chain with
a Boltzmann limiting distribution of configurations. The average ensemble
value of a configuration property such as #(1) may then be evaluated by
arithmetic averaging over the generated chain of configurations.

The system to be considered in the present case is a cavity with F+1
or F'+2 mobile ions. Such a system is particularly well suited for the Monte
Carlo evaluation because the small number of free particles makes artificial
boundary conditions unnecessary.

In the start-configuration all ions are given random, non-overlapping
positions. Successive configurations are then generated in the usual way 8
by random displacement of one ion at a time, taking the mobile ions in a
given sequence and accepting each new, tentative configuration with
probability exp(— A4U/[kT). It was found unprofitable to limit the extent
of each attempted move, i.e. the new position was chosen randomly within
the cavity. Computations on systems with higher charge on the extra ions,
however, gave increasingly poor accuracy, confirming the view that limits
on particle displacements are essential in systems with strong interactions or
high particle density.

Pseudo-random numbers for new coordinates and for stochastic selection
are generated by a standard residue method.® Current values of U and u(4)
for each new configuration are updated and accumulated by computing only
those pair potentials which involve the displaced ion. This procedure saves
computing time, and at given intervals, U and w(4) are computed ab initio
in order to avoid accumulated errors in the updating. The generated chain
of configurations is divided into equal parts or fragments, and averages for
U and u(A) are computed for each fragment. The behaviour of these averages
indicates the duration of the initial relaxation period, and total averages are
then taken over the remaining equilibrium period.

The statistical independence of the partial averages can be checked by
varying the size of the chain fragments, and the uncertainty in the total
averages are then estimated from the mean deviation of the partial averages.

RESULTS AND DISCUSSION

The model properties were chosen to simulate a typical strong-acid ion
exchange resin. Thus, the subsystem diameter D, corresponding to a mean
pore diameter, was put equal to 30 A. The number F of fixed ionic groups in
a cavity was taken to be 12, giving a fixed-ion concentration of 1.4 mol/l in
terms of pore-liquid volume. This corresponds roughly to a fully swelled,
monosulfonated styrene-type cation-exchanger with 4 %, DVB crosslinking..
All ionic diameters d were put equal to 3.2 i, which is a fairly typical Debye-
Hiickel diameter for simple 1,1-electrolytes, e.g. KCl. The temperature T' was-
chosen as 298.15 K and the relative dielectric coefficient ¢, =¢/¢, as 78.3.
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1186 ALVER AND VAULA

The effects on the model behaviour of ¢ and 7' and the size of the common
lonic charge e are not independent, however, but are connected through their
effects on the “Bjerrum length”

2
roo= 2
BT gnekl (42)

This connection arises because an explicit expression for (u(1)> has the func-
tional form
w(A)) =KkT f(Dfry,d|ry) (43)

In the present case, e is simply the positive electronic charge, and hence is
regarded as a constant.

For each of the three charging processes, (u(4)> was calculated for 1=10.1,
0.2,-++,1.0. Thirty Markov chains, each comprising 10 920 or 11 740 configura-
tions, were generated for this purpose, using a simple Fortran program and
an IBM 360/50H computer.

The initial relaxation period was roughly estimated to 40 configurations,
corresponding to three or four moves per ion, but in the calculation of total
averages, the first 520 or 560 configurations were removed.

The charging processes which yield (44,), according to eqn. (41) were
evaluated by numerical integration. All relevant results of calculations are
given in Table 1, and a graphic illustration of the three charging processes
is shown in Fig. 1.

Table 1. Calculated parameters for lattice model.

I. Mean “extra potentials”, <u;(2)>/A=1y; (eqn. 39).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

/6T 1.21 1.09 1.05 0.86 0.85 0.76 0.80 0.68 0.60 0.51
—yo/kT 1.39 1.38 1.562 1.57 1.70 1.72 1.92 2.00 2.03 2.19
— /T 0.25 0.59  0.89 1.14 1.41 1.78 2.03 2.27 2.56 2.91

II. Free energies in charging process, (44;), (eqn. 36).

j 1 2 3

(4A4;),/kT 0.877+0.033 —1.693 + 0.029 —1.437+0.023
{With estimated probable errors).

ITI. Characteristic parameters.

Volume of cavity v =14 140 A®

Free volume V,*=12 490 A3 (eqn. 35)
“Equilibrium constant”’ b=0.516 (eqn. 11)
Sorption parameter p=1.887 (eqn. 20)
Sorption parameter w=5257 A3 (eqn. 19)
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Fig. 1. Mean potentials y;=<w%;(4);/A on A
extra ions with fractional charge Ain a \
spherical cavity with twelve univalent,
mobile cations. A, extra cation. ¥/, extra
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As the behaviour of the primitive model for small ionic systems may be
of some general interest, a comment on the variation of dA;/d4= (u(1)>/2
with 4 will be made here.

04,/0A, which can be 1nterpreted as a mean electrostatic potential at the
posmon of the extra ion(s), is in each case nearly a linear function of 4. This
indicates that the mean potential at the position of each extra ion, caused by
the remaining mobile ions, is proportional to the charge on this extra ion.
(The fixed ions in the present model make a constant contribution.) This is
in accordance with a fundamental assumption in the Debye-Hiickel theory,
but the linear dependence must break down at higher ionic charges. Simple
electrostatic considerations indicate that for high A-values d4,/04, 0.4,/0A
and (1/4)244/0A must all approach constant values because the highly charged
“extra’’ ions will immobilize the other ions. Such trends were indeed confirmed
by rough Monte Carlo-computations, but as explained above, the chain con-
vergence of (u(4)) then became slower as 4 is increased to high values.

An internal check on the linear functions in Fig. 1 is furnished by a demand
that the functions (1/4) u,(2) and (1/2) u,(2) can be made co-linear by changing
the sign on 4 in the last function. This is necessary because the dis-charging
of one anion and the charging of one cation can be performed by a single
charging parameter running from —1 to + 1. A further check is given by the
physical interpretation of (1/1) (u4(4)> which requires this function to go to
zero with A, as is indeed the case.

Finally, ¥/ is calculated from eqn. (35) (generalized in the case of V)
which gives

4n

V=V 2 (V) xv-12 @ (44)
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When these values are used, and the correct statistical factors from eqn.
(32) are introduced, the following expressions for the characteristic parameters
b and w are obtained:

b = el(A4s)— (A 41),~A4,),)/kT (45)

v.!
w = )\/—_—_}_é_e[_(d‘ll)a—(Ax)‘ﬂ/sz (46)

Numerical values for w and p are thus obtained (Table 1) and give numerical
values for the predicted salt sorption:

¢=0.37a."—0.072 I mol(a. )2+ 0.6812mol 2 (a,.')3+ «-- (47)
For sufficiently small concentrations a limiting sorption equation is obtained:
m=Km' (48)

where K may be estimated from eqns. (24) and (47) as K ~0.4.

The limiting sorption behaviour of the present model is seen to deviate
from both ideal Donnan sorption (eqn. 2) and the empirical eqn. (3).

It does, however, agree with the general observation for ‘“normal” ion
exchangers, that for sorption from very dilute solutions, the experimental
molality of sorbed salt is of the same order as the external molality.® A de-
crease In the sorption coefficient m’/m at somewhat larger concentrations,
corresponding to a negative second coefficient in eqn. (47), has also been
reported.10

The lattice model seems to merit further investigation. Two extensions
of the present, specialized model suggest themselves. A larger number of
subsystem states may be included in the statistical treatment, thus removing
the restriction to low external concentrations. Secondly, different kinds of
subsystems may be tried by introducing structural features which are important
for selecting between different counter-ions. Synthetic zeolites with known
structures may be a promising field of application for an extended lattice
model.
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