Thermochemical Studies of Hydrolytic Reactions ## 11. Polyselenite Equilibria in Various Ionic Media ROBERT ARNEK and LAJOS BARCZA* Department of Inorganic Chemistry, Royal Institute of Technology (KTH), S-100 44 Stockholm 70. Sweden The reactions of H⁺ and SeO₃²⁻ have been studied calorimetrically at 25°C in three different ionic media, 3 M NaClO₄, 1 M NaClO₄, and 3 M LiClO₄. The enthalpy and entropy changes for the reactions were calculated using the equilibrium constants determined by Barcza and Sillén. The thermodynamic quantities ΔG° , ΔH° , and ΔS° in the various media are given in Table 4. The reactions between the selenite ion, SeO_3^{2-} (= L^{2-}), and protons have been studied by emf titrations by Barcza and Sillén.¹ The general reaction can be written $$p\mathbf{L}^{2^-} + q\mathbf{H}^+ \mathop{\rightleftharpoons} \mathbf{H}_q \mathbf{L}_p{}^{(2p-q)-}; \quad [\mathbf{H}_q \mathbf{L}_p] = \beta_{pq} l^p h^q \quad [\mathbf{H}^+] = h, \quad [\mathbf{L}^{2^-}] = l$$ The results from the emf measurements could be explained by assuming the formation of the binuclear $\mathrm{HL_2^{3-}}$, $\mathrm{H_2L_2^{2-}}$, $\mathrm{H_3L_2^{--}}$, and $\mathrm{H_4L_2}$ as well as the mononuclear products $\mathrm{HL^-}$ and $\mathrm{H_2L}$. The formation constants of the species were determined in nine different ionic media. | | Table | 1. | Logarithms | \mathbf{of} | equilibrium | constants | $\log (\beta_{pq} \pm 3\sigma)$. | |--|-------|----|------------|---------------|-------------|-----------|-----------------------------------| |--|-------|----|------------|---------------|-------------|-----------|-----------------------------------| | | β 11 | $oldsymbol{eta_{12}}$ | $oldsymbol{eta_{21}}$ | $oldsymbol{eta_{22}}$ | $oldsymbol{eta_{23}}$ | β ₂₄ | |------------------------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------| | 3 M NaClO ₄ | 8.05 ± 0.02 | 10.66 ± 0.02 | 7.79 ± 0.07 | 15.49 ± 0.07 | 19.02 ± 0.05 | 20.91 ± 0.10 | | l M NaClO ₄ | 7.78 ± 0.02 | 10.05 ± 0.02 | 8.01 ± 0.12 | 15.73 ± 0.09 | 18.70 ± 0.07 | 20.80 ± 0.07 | | M LiClO ₄ | 7.66 ± 0.01 | 10.18 ± 0.02 | | 14.39 ± 0.08 | 17.99 ± 0.005 | 19.83 ± 0.08 | ^{*} Present address: Institute of Inorganic and Analytical Chemistry, L. Eötvös University, Budapest, Hungary. Acta Chem. Scand. 26 (1972) No. 1 | Table 2. $\Delta H_{pq}^{\circ} \pm \sigma(\Delta H^{\circ})$ (keal mo | |--| |--| | | 3 M NaClO ₄ | 1 M NaClO ₄ | 3 M LiClO ₄ | |----------------------|------------------------|------------------------|------------------------| | ΔH_{11} | -1.26 + 0.01 | -1.20 + 0.01 | -1.85 + 0.004 | | ΔH_{13} | 0.00 ± 0.02 | 0.30 ± 0.03 | -1.11 ± 0.01 | | ΔH_{21}^{12} | -2.27 ± 0.06 | -0.62 ± 0.06 | | | ΔH_{22} | -3.41 ± 0.09 | -1.24 ± 0.08 | -1.27 ± 0.11 | | ΔH_{23}^{23} | -1.98 ± 0.05 | 0.03 ± 0.06 | -2.06 ± 0.05 | | ΔH_{24}^{-1} | -2.08 ± 0.16 | 1.56 ± 0.08 | -0.14 ± 0.22 | | σ_O , cal | 0.068 | 0.060 | $0.04\bar{2}$ | Table 3. Experimental data. Values of v(ml), $Q_{\rm exp}({\rm cal})$, $(Q_{\rm calc}-Q_{\rm exp})({\rm cal})$. ## 3 M NaClO. ## 1 M NaClO $\begin{array}{l} Expt. \ 1. \ B=0.05 \ \text{M}, \ H_{\rm S}=0.00857 \ \text{M}, \ H_{\rm T}=0.65 \ \text{M}, \ V_{\rm 0}=227.53 \ \text{ml} \ 3.00, \ 2.36, \ -0.07; \\ 6.00, \ 2.36, \ -0.09; \ 9.00, \ 2.27, \ -0.01; \ 12.00, \ 2.25, \ 0.00; \ 15.00, \ 2.34, \ -0.11; \\ Expt. \ 2a. \ B=0.05 \ \text{M}, \ H_{\rm S}=0.05316 \ \text{M}, \ H_{\rm T}=0.65 \ \text{M}; \ V_{\rm 0}=244.53 \ \text{ml} \ 3.00, \ -2.22, \ -0.07; \\ 6.00, \ -2.16, \ -0.02; \ 9.00, \ -2.02, \ -0.02; \ 12.00, \ -1.88, \ 0.02; \ 15.00, \ -1.67, \ 0.03; \ 18.00, \ -1.44, \ 0.05; \\ Expt. \ 2b. \ B=0.05 \ \text{M}, \ H_{\rm S}=0.05316 \ \text{M}, \ H_{\rm T}=0.65 \ \text{M}, \ V_{\rm 0}=244.53 \ \text{ml} \ 1.50, \ -1.10, \ -0.06; \\ 4.50, \ -2.20, \ -0.04; \ 7.50, \ -2.10, \ -0.02; \ 10.50, \ -1.96, \ 0.00; \ 13.50, \ -1.79, \ 0.03; \ 16.50, \ -1.56, \ 0.04; \\ Expt. \ 3. \ B=0.05 \ \text{M}, \ H_{\rm S}=0.00434 \ \text{M}, \ H_{\rm T}=0.65 \ \text{M}, \ V_{\rm 0}=226.03 \ \text{ml} \ 3.00, \ 2.33, \ -0.04; \\ 6.00, \ 2.27, \ 0.01; \ 9.00, \ 2.27, \ 0.00; \ 12.00, \ 2.26, \ 0.00; \ 15.00, \ 2.27, \ -0.03; \\ Expt. \ 4. \ B=0.10 \ \text{M}, \ H_{\rm S}=0.01148 \ \text{M}, \ H_{\rm T}=1.30 \ \text{M}, \ V_{\rm 0}=226.53 \ \text{ml} \ 3.00, \ 4.47, \ -0.02; \\ 6.00, \ 4.40, \ 0.01; \ 9.00, \ 4.33, \ 0.05; \ 12.00, \ 4.35, \ -0.01; \ 15.00, \ 4.30, \ 0.01; \\ Expt. \ 5a. \ B=0.10 \ \text{M}, \ H_{\rm S}=0.1063 \ \text{M}, \ H_{\rm T}=1.30 \ \text{M}, \ V_{\rm 0}=244.53 \ \text{ml} \ 3.00, \ -4.81, \ -0.11 \\ 6.00, \ -4.69, \ -0.09; \ 9.00, \ -4.56, \ -0.02; \ 12.00, \ -4.32, \ 0.04; \ 15.00, \ -3.96, \ 0.12; \ 18.00, \ -3.40, \ 0.17; \end{array}$ #### Table 3. Continued. ``` Expt. 5b. B = 0.10 \text{ M}, H_S = 0.1063 \text{ M}, H_T = 1.30 \text{ M}, V_0 = 244.53 \text{ ml } 1.50, -2.42, -0.05; 4.50, -4.81, -0.05; 7.50, -4.66, -0.03; 10.50, -4.47, 0.03; 13.50, -4.18, 0.10; 16.50, -3.72, 0.16; Expt. 6. B = 0.100 M, H_{\rm S} = 0.01995 M, H_{\rm T} = 1.30 M, V_{\rm 0} = 228.03 ml 3.00, 4.39, 0.04; 6.00, 4.36, 0.03; 9.00, 4.29, 0.07; 12.00, 4.29, 0.04; Expt. 7a. B = 0.20 M, H_{\rm S} = 0.030 M, H_{\rm T} = 1.75 M, V_{\rm 0} = 224.53 ml 1.49, 2.87, 0.02; 4.50, 5.82, 0.00; 7.50, 5.80, -0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 16.50, 5.58, 0.09; 19.50, 5.62, 0.01, 29.55, 67, 0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 16.50, 5.58, 0.09; 19.50, 5.62, 0.01, 29.55, 67, 0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 10.50, 5.58, 0.09; 19.50, 5.62, 0.01, 29.55, 67, 0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 10.50, 5.58, 0.09; 19.50, 5.62, 0.01, 29.55, 67, 0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 10.50, 5.58, 0.09; 19.50, 5.62, 0.01, 29.55, 67, 0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 10.50, 5.58, 0.09; 19.50, 5.62, 0.01, 29.55, 67, 0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 10.50, 5.68, 0.09; 19.50, 5.62, 0.01, 29.55, 67, 0.03; 10.50, 5.66, 0.08; 13.50, 5.67, 0.03; 10.50, 5.68, 0.09; 19.50, 5.66, 0.08; 10.50, 5.62, 0.01; 22.50, 5.67, -0.07; \begin{array}{l} \text{S.02, 0.01, 22.50, 0.07, } \\ \text{Expt. 7b. } B = 0.20 \text{ M}, H_{\text{S}} = 0.03 \text{ M}, H_{\text{T}} = 1.75 \text{ M}, V_{\text{0}} = 224.53 \text{ ml } 3.00, 5.83, } \\ \text{-0.02; 9.00, 5.77, } -0.02; 12.00, 5.72, 0.00; 16.01, 7.66, } -0.07; 20.00, 7.50, } -0.01; \\ \text{Expt. 8a. } B = 0.20 \text{ M}, H_{\text{S}} = 0.2023 \text{ M}, H_{\text{T}} = 1.75 \text{ M}, V_{\text{0}} = 249.53 \text{ ml } 4.00, } \\ \text{-8.38, 0.12; } \\ \text{-0.00, } -6.21, 0.04; 10.00, } -6.10, -0.01; 13.00, \\ \text{-6.03, 0.00; 16.00, } -5.91, \\ \text{-0.01; 19.00; } \end{array} -5.71, -0.07; Expt. 8b. B = 0.20 M, H_{\rm S} = 0.2023 M, H_{\rm T} = 1.75 M, V_{\rm 0} = 249.53 ml 2.50, -5.19, 0.03; 5.50, -6.24, 0.05; 8.50, -6.09, -0.05; 12.00, -7.04, -0.03; 16.00, -7.87, -0.05; 20.00, -7.57, -0.10; 23.00, -5.48, -0.02; 3 M LiClO \begin{array}{l} Expt.\ 1.\ B=0.10\ \text{M},\ H_{\rm S}=0.01714\ \text{M},\ H_{\rm T}=1.30\ \text{M},\ V_{\rm 0}=227.53\ \text{ml}\ 3.00,\ 6.89,\ -0.04;\\ 6.00,\ 6.88,\ -0.06;\ 9.00,\ 6.80,\ -0.02;\ 12.00,\ 6.78,\ -0.03;\ 15.00,\ 6.72,\ -0.01;\\ Expt.\ 2a.\ B=0.10\ \text{M},\ H_{\rm S}=0.1063\ \text{M},\ H_{\rm T}=1.30\ \text{M},\ V_{\rm 0}=244.53\ \text{ml}\ 3.00,\ -2.46,\ -0.03;\\ 6.00,\ -2.40,\ -0.02;\ 9.00,\ -2.33,\ 0.00;\ 12.00,\ -2.24,\ 0.03;\ 15.00,\ -2.00,\ 0.00;\ 18.00,\\ \end{array} ``` $\begin{array}{l} Expt.\ 2b.\ B=0.10\ \mathrm{M},\ H_{\mathrm{S}}=0.1063\ \mathrm{M},\ H_{\mathrm{T}}=1.30\ \mathrm{M},\ V_{\mathrm{0}}=244.53\ \mathrm{ml}\ 1.50,\ -1.23,\ -0.02;\\ 4.50,\ -2.45,\ -0.01;\ 7.50,\ -2.42,\ 0.04;\ 10.50,\ -2.32,\ 0.04;\ 13.50,\ -2.17,\ 0.05;\ 16.50, \end{array}$ $Expt. \ \ 3. \ B = 0.10 \ \ \mathrm{M}, \ H_{\mathrm{S}} = 0.008627 \ \ \mathrm{M}, \ H_{\mathrm{T}} = 1.300 \ \ \mathrm{M}, \ V_{\mathrm{0}} = 226.03 \ \ \mathrm{ml} \ \ 3.00, \ 6.90, \ -0.03;$ 6.00, 6.85, -0.02; 9.00, 6.78, 0.02; 12.00, 6.80, -0.03; 15.00, 6.77, -0.03; $Expt. \ 4. \ B = 0.30 \ \text{M}, \ H_{\text{S}} = 0.12 \ \text{M}, \ H_{\text{T}} = 1.20 \ \text{M}, \ V_{\text{0}} = 224.53 \ \text{ml} \ 2.00, \ 3.71, \ 0.00; \ 4.00, \ 3.69, \ 0.01; \ 6.00, \ 3.66, \ 0.03; \ 8.00, \ 3.63, \ 0.05; \ 10.00, \ 3.66, \ 0.01; \ 13.00, \ 5.50, \ -0.01; \ 16.00, \ 5.44, \ 0.03; \ 19.00, \ 5.45, \ 0.01; \ 22.00, \ 5.37, \ 0.07; \ 25.00, \ 5.44, \ -0.01; \ 29.00, \ 7.10, \ 0.11; \ 33.00, \ 7.11, \ 0.08; \ 37.00, \ 7.08; \ 41.00, \ 7.06; \ 0.06; \$ $Expt. \ 5. \ B = 0.30 \ \text{M}, \ H_{\rm S} = 0.3167 \ \text{M}, \ H_{\rm T} = 1.20 \ \text{M}, \ V_{\rm 0} = 224.53 \ \text{ml} \ 2.46, \ -1.18, \ -0.01;$ $\begin{array}{c} 5.00, \quad -1.22, \quad -0.01; \quad 7.50, \quad -1.20, \quad -0.01; \quad 10.00, \quad -1.20, \quad 0.00; \quad 13.00, \quad -1.43, \quad -0.01; \\ 16.00, \quad -1.44, \quad 0.01; \quad 19.00, \quad -1.43, \quad 0.01; \quad 22.00, \quad -1.45, \quad 0.03; \quad 25.00, \quad -1.40, \quad -0.01; \quad 29.00, \\ -1.88, \quad 0.01; \quad 33.00, \quad -1.87, \quad 0.02; \quad 37.00, \quad -1.88, \quad 0.04; \quad 41.00, \quad -1.88, \quad 0.05; \quad 45.00, \quad -1.86, \\ \end{array}$ 0.05; 50.00, -2.31, 0.08; $\begin{array}{l} 13.00,\, 3.97,\, -0.07;\, 14.50,\, 3.92,\, -0.03;\, 16.00,\, 3.84,\, 0.04;\\ Expt.\,\, 7.\,\, B=0.60\,\, \mathrm{M},\, H_{\mathrm{S}}=0.6223\,\, \mathrm{M},\, H_{\mathrm{T}}=1.90\,\, \mathrm{M},\, V_{\mathrm{0}}=224.53\,\, \mathrm{ml}\,\, 2.00,\, -1.07,\, 0.05;\, 4.00,\, -1.08,\, 0.04;\, 5.98,\, -1.06,\, 0.02;\, 8.03,\, -1.10,\, 0.02;\, 10.00,\, -1.06,\, 0.02;\, 13.00,\, -1.62,\, 0.02;\\ \end{array}$ 16.00, -1.61, 0.01; 18.98, -1.62, 0.02; 22.01, -1.65, 0.02; 25.00, -1.60, -0.02; 29.00, -1.60, -1.-2.15, -0.02; 33.00, -2.15, -0.03; 37.00, -2.16, -0.02; 41.00, -2.12, -0.07; 45.00,-2.13, -0.06; 50.00, -2.66, -0.09. In parallel with the emf work some calorimetric measurements were also performed on selenites. These measurements were made in three different ionic media, 3 M NaClO₄, 1 M NaClO₄, and 3 M LiClO₄, in order to obtain some information on the influence of the medium upon the thermodynamic quantities ΔG° , ΔH° , and ΔS° . The results of these calorimetric measurements are reported in the present paper. Table 4. Thermodynamic quantities | Reaction | | 3 M NaClO_4 ΔH° , keal | <i>∆S</i> °, e.u. | |---|-------------------|---|-------------------| | 1. H ⁺ +SeO ₃ ²⁻ ⇌HSeO ₃ ⁻ | 10.98 ± 0.03 | -1.26 ± 0.03 | 32.6 ± 0.1 | | 2. $H^+ + HSeO_3 = H_2SeO_3$ | -3.56 ± 0.04 | 1.26 ± 0.08 | 16.2 ± 0.3 | | 3. $H^+ + H(SeO_3)_2^{3-} \rightleftharpoons H_2(SeO_3)_2^{2-}$ | -10.50 ± 0.14 | -1.14 ± 0.33 | 31.4 ± 1.2 | | 4. $H^+ + H_3(SeO_3)_2 = H_4(SeO_3)_2$ | -2.58 ± 0.16 | -0.10 ± 0.50 | 8.3 ± 1.8 | | 5. $2HSeO_3 \xrightarrow{-} \rightleftharpoons H_2(SeO_3)_2 \xrightarrow{2}$ | 0.83 ± 0.11 | -0.89 ± 0.28 | -5.8 ± 1.0 | | $6. 2H_2SeO_3 \rightleftharpoons H_4(SeO_3)_2$ | 0.55 ± 0.15 | -2.08 ± 0.49 | -8.9 ± 1.8 | ### **EXPERIMENTAL** The preparation and analysis of the reagents have been described in the paper on the emf measurements.¹ The calorimetric technique used has been described previously.² The experiments were carried out as enthalpy titrations in which successive additions of v ml of a solution T were made from a thermostated buret to V_0 ml of a solution S contained in the calorimeter vessel. The total selenite concentration, B, was kept constant throughout each experiment. The hydrogen ion excess concentration in the S and T solution is $H_{\rm S}$ and $H_{\rm T}$ M, respectively. The values for B, $H_{\rm S}$, $H_{\rm T}$, and V_0 are given in Table 3 for each experiment ("titration"). #### RESULTS AND DISCUSSION The data from the calorimetric titrations have been treated with the generalized least squares computer program LETAGROP/KALLE³ (calorimetric version of LETAGROP 4,5). With this program the computer searches for the set of unknown constants, k_i , which minimizes the error square sum $$U = \sum (Q_{\mathrm{calc}} - Q_{\mathrm{obs}})^2$$ where Q is the heat effect. The result is a set of "best" constants with their standard deviations and also the standard deviation in the Q-measurements, σ_Q . The reactions which have been studied are $$p\mathrm{SeO_3^{2-}} + q\mathrm{H}^+ \mathop{\rightleftharpoons}\nolimits \mathrm{H}_q(\mathrm{SeO_3})_p{}^{(2p-q)-}$$ for which we will write ΔH_{pq}° for the enthalpy change and β_{pq} for the equilibrium constant. The values for the β_{pq} , determined by emf by Barcza and Sillén,¹ are given in Table 1. Using these equilibrium constants the enthalpy changes ΔH_{pq}° were calculated by means of the computer program LETAGROP/KALLE. The result is given in Table 2. In Table 3 the experimental data (v,Q) and the difference $(Q_{\rm calc}-Q_{\rm exp})$ are given. The agreement between experimental and calculated Q-values is satisfactory; no systematic deviations seem to be present. It is to be noted that the calorimetric data could not be satisfactorily interpreted assuming less than six complexes (in 3 M LiClO₄ five complexes). This gives some support to the reaction scheme proposed.¹ for the H^+ – SeO_3^{2-} system. | ∆G°, kcal | 1 M NaClO ₄ ΔH°, kcal | <i>∆S</i> °, e.u. | | 3 M LiClO₄
⊿H°, kcal | $\Delta S^{\circ}, { m e.u.}$ | |-------------------|----------------------------------|-------------------|-------------------|-------------------------|-------------------------------| | -10.61 ± 0.03 | -1.20 ± 0.04 | 31.6 + 0.2 | -10.45 ± 0.01 | -1.85 ± 0.01 | 28.8 ± 0.03 | | -3.10 ± 0.04 | 1.50 ± 0.10 | 15.4 ± 0.4 | -3.44 ± 0.03 | 0.74 ± 0.04 | 14.1 ± 0.1 | | -10.53 ± 0.20 | -0.62 ± 0.29 | 33.2 ± 1.2 | | | | | -2.87 ± 0.14 | 1.53 ± 0.29 | 14.8 ± 1.1 | -2.51 ± 0.11 | 1.92 ± 0.68 | 14.8 ± 2.2 | | -0.24 ± 0.13 | 1.16 ± 0.22 | 4.6 ± 0.8 | 1.27 ± 0.11 | 2.43 ± 0.34 | 4.0 ± 1.2 | | -0.96 ± 0.11 | 0.96 ± 0.27 | 6.4 ± 1.0 | 0.73 ± 0.12 | 2.08 ± 0.66 | 4.4 ± 2.2 | In Table 4 we have given the thermodynamic quantities ΔG° , ΔH° , and ΔS° for the protonation (1-4) and dimerization (5-6) reactions in the protonselenite system. Comparing the values in the different solvents we find that the thermodynamic parameters, especially ΔH° and ΔS° , are obviously affected by the medium. E.g., for the dimerization reactions (5 and 6), there is a remarkable change in ΔH° and ΔS° going from 3 to 1 M NaClO₄; the increasing stability of the binuclear species with dilution of the medium seems to be entirely a result of the marked change in the entropy term. The ΔG° -values for the protonation reactions (1-4) are nearly the same in the different media, although the ΔH° and ΔS° values are changed; the latter terms apparently counteract each other's influence on the ΔG° term. This work was financially supported by Statens Naturvetenskapliga Forskningsråd (the Swedish Natural Science Research Council). ## REFERENCES - 1. Barcza, L. and Sillén, L. G. Acta Chem. Scand. 25 (1971) 1250. - 2. Arnek, R. and Kakolowicz, W. Acta Chem. Scand. 21 (1967) 1449. - 3. Arnek, R. Arkiv Kemi 32 (1970) 81. - 4. Sillén, L. G. Acta Chem. Scand. 18 (1964) 1085. - 5. Ingri, N. and Sillén, L. G. Arkiv Kemi 23 (1964) 97. Received April 16, 1971.