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Influence of Crystal Habit and Particle Size Distribution
on the Decomposition of a Solid. II. The Log-normal and

the Super-hyperbolic Number Distributions
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The topochemical kinetics has been derived for rectangular pris-
matic crystals with either log-normal or super-hyperbolic particle size
distributions. It has been stressed that the influences of the crystal
habit and particle size distribution on the decomposition kinetics can
be treated as separate problems. Irrespective of the type of distri-
bution, narrow distributions with identical dispersions are further
shown to result in practically identical decomposition curves. Some of
the results from the numeric calculations of the reduced decomposition
curves (degree of reaction versus reduced time) have been tabulated
for crystal cubes.

hen a crystalline solid is heated or evacuated until a decomposition can

be observed, the reaction rate will be determined by the following sequence
of steps: heterogeneous nucleation, growth of nuclei, and diffusion of gaseous
reaction products. When crystals are exposed to vacuum, the surface may be
covered immediately by a product layer, whereafter the inwards movement
of the reaction zone will be the rate determining step. Rate expressions can
therefore simply be derived from the outer geometrical properties of the
crystals.

}The resulting topochemical kinetics have previously been described for
single (or unisized) crystals of cubic,! orthorhombic,®? and monoclinic?
symmetry and for size distributed crystals of cubic or spheric? and
orthorhombic %% symmetry. Trambouze and Imelik ¢ gave expressions for the
decomposition of normal and logarithmic normal distributed spheres in terms
of the mean particle diameter. Using the same diameter Delmon 5 described
the decomposition of parallelepipeds with different size distributions. Master
curves were drawn for the degree of reaction versus a reduced time, which
Delmon defined as the ratio between the actual time and the time corre-
sponding to a degree of reaction of 0.9. On the other hand Engberg ¢ considered
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the decomposition of parallelepipeds with rectangular or narrow normal
particle size distributions and defined the reduced time by means of the specific
surface area. The master curves were thus transformed to curves with identical
initial slopes. This greatly facilitates the evaluation of the kinetic parameters
from experimental data, as the rate constants were obtained as the initial
slopes of plots of 1 —(1 —«)!/3 against time, where « is the degree of reaction.
It was shown that a convexity of the experimental curves may be caused by
a certain size distribution of uniform particles in the sample, while a concavity
could be explained by a certain reaction anisotropy. It was further shown
that narrow normal and rectangular size distributions may result in approxi-
mately the same kinetics.

In this paper the kinetics for particles with logarithmic normal and super-
hyperbolic size distributions are considered.

THEORY

For a sample of uniform prismatic crystals the volume V(t) of unreacted
material at the time ¢ can be written

Vit)= f ;‘2 (a— 2kt)(l,a — 2kt)(La — 2kt) G(a) da (1)

a being the smallest edge length of the crystal, I; and [, the elongations, &
the linear rate constant and G(a) the frequency function determining the
particle size distribution. Using this relation the degree of reaction «(t) is found

from
«(t)=1-[V(t)/V(0)] (2)

In order to make the following expressions more general the particle size
will be discussed in terms of the mode a,, of the particle size distribution and
the relative particle size ¢, so that @ may be replaced by ga,,. Finally, 2kt/a,,
is replaced by the reduced time w. The degree of reaction may then be written

[2 a-wtg-wtg—w) 6la) dg

a(t)=1 = 3)
[ hhG(@)dg
which can be written out to give
a(w)=1— I, + I+ 1+ 1,1,5) I“u-— (T+1,+0) 1, w2
Iso Ly Igo Ly Iy
(4)
+ Tou s
by Ige
where I, , denote the integrals
e o]
L,= [ 6) q"dq (5)

which are dependent only on the relative particle size distribution. When
these integrals are independent of time, which will be the case as long as
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none of the particles in the sample are totally decomposed, the degree of
reaction is seen to be given as a polynomial of third degree in the reduced
time. (%) is now independent of the particle size (strictly speaking the mode
of the particle size a,,). However, the initial slope of the reduced decomposition
curve still depends on the shape of the particles in so far as the coefficient of
u in eqn. (4) contains the particle shape contribution to the specific surface
area.

Many authors have analyzed the decomposition curves by plotting
1—(1—«)'/3 against ¢ and they have obtained straight lines up to a degree of
reaction of 0.4 or more, according to the equation

1-(1—a)B=1yt (6)
which is identical with the following equation
o(t) = 3(kgt) — 3(kst)? + (kgt)® (7}
Introducing the reduced time x==Fk4t we simply get
a(x) = 3z — 322 + 23 (8)

The latter expressions, however, should only be applicable for the de-
compositions of unisized spheres or cubes and otherwise eqn. (4) should be
applied. However, the influence of particle shape and size distribution on the
decomposition curve is most easily seen, when it is discussed in terms of
deviations from the simple rate expression given in eqn. (8). For this purpose
eqn. (4) is expressed in the x variable using

_ I+l + 1), w

ETRA RS ®

to give
9(1+1, +1,)11,Q, 271,°1,°Qs
= 30,2 — 2 3
()= Qo+ 30,2 (I3 + 1+ 1) g (l1+l2+l1l2)3x (10}
where the quantitles
I I, .1,
Q 3,u Ql" 2u7Qz— 1: 3,0 . Qs— 0. ,0 (11)‘
2,0 20’

represent the contrlbutlons from the relative particle size distribution to the
coefficients in the polynomial of x. Accordingly they will be named the
distribution coefficients.

At the beginning of the decomposition, or strictly speaking in the time
before that moment where the smallest particle has been totally decom-
posed, a change of the lower limit in the integrals I,, from u to zero will
have no influence of the result, meaning that I,,=1,0. In this case the
distribution coefficients take the values of

2
Q' =0; Ql—le—I"’I‘;", 3O=M%g (12)
20 12,0
giving
91 +1, +1)L1L,Q,° e 271,21,2Q4°
(3 + 1+ 1,1,)* P+ L+ 108
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where the superscripts denote this special case. However, this case does not
necessarily need to be restricted to the beginning, since the equation may
be satisfactory for the main part of the decomposition curve. For example
when the particle size distribution is rectangular with a smallest particle size
of half the mean, the conditions will be fulfilled for a degree of reaction up to
at least 0.8. For still higher degrees of reaction eqn. (10) should be applied.
The distribution coefficients will then be dependent on time giving a polynomial
in « of higher order than three.

When, at the beginning of this paper the reduced time % was introduced
instead of 2 kt/a,, a, was said to be the mode of the particle size distribution.
We must emphasize that a continuous distribution with a frequence maximum
was understood. In case of a discontinuous distribution a, will be used for the
mean of the definition interval of particle size.

The reduced time 2 can be defined by analogy with u as 2kt/a,, where q,
denotes the cubic mean edge length, i.e. the edge length of a cube with the
same specific surface area as the sample. The relation between ¢, and a,, can
be derived from eqn. (9) to give

a, 31,1,15,

O (Uit 1+ 1)1,

(14)

The ratio is seen to be reduced to unity for a cube without a size distribution
(ly=13=1 and I3,=1,,=1) in accordance with the definition.

In the following will be derived the distribution coefficients @,° and @,°,
the normalization factor g and the ratio a,/a,, for some simple size distributions
not dealt with in the previous paper.®

Log-normal distribution is considered as a model for the particle size
distribution of undivided material. In this case the number distribution can
be defined by the frequency function

G(g)=9g exp [— %(l—r—;—q)z] (15)

where ¢ is the normalization factor and s the distribution parameter. The
latter is chosen cube root three times smaller than the normally defined
standard deviation to bring the kinetic expressions in accordance with those
relating to the discontinuous distributions. The problem is now to solve the

integrals
0 3 ln 2
Lo= [, G(q)q”dq=gf:o q" exp [— 5(%) ]dq (16)

Replacement of the variable by

_ (3)'/%Ing 17
= s 4
results in
Lo=(2) "gs [® 2 1)(2/3)2sy]dy =
n.o—(g,;) gs [ expl—y+ (n-+1)(2/3) s}y = (18)

(270/3)1%gs expl{(n+1)%%]
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which gives us

@y =exp(}s®); @5’ =exp(s?) (19)
Normalization of the frequency function
I,0=1=(2n/3)'/2gs exp(}s?) (20)
leads to
(3/2m)112

77 s exp(s6) -

As the distribution is continuous, the smallest particles will already be
decomposed at the very beginning. Thereafter the kinetic expression relating
to the distribution coefficients given in eqn. (19) will result in more or less
erroneous results. The accurate expression is obtained by solving the integrals

= [ G@rag=(5) " [ expl-y+ 0+ 13 Vosldy

(;;)lll-[n-su
Substitution of
_ 2\'2 /m+1\  /3\Y2/Ing n+l ‘
(R EE)

L= (3)/2%gs eb 1 f * exp[ —2#]dz

N\2/nu n+ls
(-3

Replacement of by x according to eqns. (9) and (18) and introduction of the
relative shape factor f (in relation to that of the cube)

(22)

yields

(24)

L+ L+
f= Tall, (25)

give that

[\ 1 (g 1)t N2 /Inxe 5-2n Inf
e e ()] e

resulting in

@
|

i )

w ()
Qy= é [l—erf((_g>1/2 (lnx N %s_ 11;f>>-1 o (27)
5

)

/\
N
ol o
S—"
-
=
/N
5
V)
fa "”!
..|..

Q= %[1 —erf
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When 2 is small, the inner parentheses will be numerically large and
negative, whereby the error functions tend towards —1 to give the size
distribution coefficients already quoted in eqn. (19).

Superhyperbolic distributions are considered as models for the particle size
distributions of sieve fractions. They are defined by the frequency functions

Ga)=9q" (28)
within the range 1-s<g<1+s and are easily integrated to obtain the

distribution coefficients. Because of the discontinuous distributions we must
only remember that the integrals I, , become

1+s
9/, ¢ ™dg (1-s<u)
Liw= f  6(q)g"dg = fm (29)
gfl_{q”—'"dq (w<1-38)
For the long time region (1 —s< ) the distribution coefficients turn out to be
_ut—(1-8)? 1+s w o In[(1+s)fu] , l4s—u
QO_ 48 Ql—' QZ—' 28 ’ QS_ 28(1+8)u (30)
for the square-hyperbolic dlstrlbutxon, and
0 u—(1-8) Q.= In[(1+s8)/u] | Q.= 28(1+s8—u)
0= 25 1T In[(1+8)/(1=38)]" ¥* (1+s){In[(1+s) /(l—s)]}zu
2 —y
. Lt ey (31)

(T+ sP{Inf(1 + 8)/(1 — o) Pu?’

for the cube-hyperbolic distribution. The corresponding quantities for the short
time region are shown in Table 2.

Table 1. Selected size distributions and their properties.

C Definition G _ Lo
Distribution G(q) range anf Tho
Rectangular 1 1- 1 1+at
o 8<g<l+s 14473
i 3/27)1/2 3 -1 2
Gaussian (.._/__:)_exp[ 5( s ) ] 0<g< %—%
Log-normal (8/2m)* 2 In q) ] [Z ”]
& 8 exp(s*/6) exp[ ( O<a<e *Ple
Square-hyp. %L’; 1-s<g<l+s 1
8 q
(1 -2y 28
Cube-hyp. % l-s<g<l+s

In (1 +s)
1-—s
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Table 2. Expansions of the size distribution coefficients.

Distribution Q.°
Rectangular 148 g4 Yo 1ol 5 e T gl
or Gaussian (1+82/3)2 3 3¢t 278 81 +
Log-normal es!3 =1+ ls=+ ls4+ l_—s°+ 1__s°+~~~
g 3 6 18 72
l+s)
In (-T2
Squaro hyp. ((E) TS VIS I RIS P
23
12\ 1, 4 44 428
| Cube-hyp. T 1 =14+ 58+ 8+ %+ " 88 4...
u yp 1—83(In(£)) +3g8+ 158 + 1898 + 20258 +
Distribution Qs°
| Rectangular 1+8® _qig- Lo 1 g 1 ey ..
or Gaussian (1+35%/3) AR g ¥+ g o
1 1 1
Log-normal =] 4524 =std = g8 - g8 ...
0g-norma e +8+28+ 68+ 248+
{ Square-hyp. 1 182 =148+ 4+ PO PLITI
23 3
1 — T 16 1072 16992
Cube-hyp. B — 1 =148+ ogt4 —‘Sgeq 0 g8 L.
ube-hyp e (ln (I_J_ELZ)> Ot Bt 9 Tt t
DISCUSSION

The final results have been collected in Tables 1 and 2. Which of the
distributions will exert the greatest influence on the coefficients does not
seem obvious, as the distribution coefficients take quite different forms for
the different distributions. For this purpose the distribution coefficients have
been expanded into the series quoted in Table 2. They show that it is not
just the first term, but also the second, in the expansions, which is common
for all distributions. This implies that the decomposition curves for narrow
distributions (with s less than 0.3) can be described with sufficient accuracy
(0.1 %) up to a degree of reaction of at least 0.85, by curves which are
dependent only on the relative dispersion and not on the type of distribution.
For broader distributions or longer times, however, the type of distribution
may also play a role. It appears from Table 2 that the dependence of @,° and
@;° on s is smallest for the rectangular and greatest for the cube hyperbolic
distribution. The convexity of the decomposition curves, with s kept constant,
will therefore increase in the falling order given in the table.
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This can also be read from Table 3, where some of the results from the
numeric calculations have been collected. The table shows the qualitative
predictions to be fulfilled for reduced times less than about 0.6. For longer
times the degree of reaction is increasing slower for the log-normal distribution
because of the continuous nature of the distribution.

Table 3. Degree of reaction for size distributed cubes (or spheres, I, =1,=1) of different
distribution types.

§=0.5 8=0.9
z recta log-n. sq.hyp  cb.hyp. recta log-n. sq.hyp. cb.hyp.

0.02 0.0587 0.0587 0.0587 0.0587 0.0587 0.0584  0.0581 0.0577
0.04 0.1150 0.1149 0.1149 0.1148 0.1147 0.1139 0.1125 0.1110
0.06 0.1688 0.1685 0.1684 0.1684 0.1682 0.1663 0.1635 0.1601
0.08 0.2202 0.2198 0.2196 0.2195 0.2193 0.2160 0.2113 0.2055
0.10 0.2693 0.2687 0.2684 0.2682 0.2679 0.2629 0.2562 0.2473
0.12 0.3161 0.3153 0.3148 0.3146 0.3143 0.3073 0.2984  0.2860
0.14  0.3607 0.3596 0.3591 0.3587 0.3584  0.3491 0.3382 0.3217
0.16  0.4032 0.4018 0.4011 0.4006 0.4003 0.3886 0.3758 0.3549
0.18 0.4436 0.4418 0.4410 0.4404 0.4402 0.4258 0.4113 0.3857
0.20 0.4820 0.4798 0.4788 0.4782 0.4780 0.4608 0.4448 0.4146
0.24¢ 0.5529 0.55699 0.5486 0.5476 0.5479 0.5247 0.5066 0.4671
0.28 0.6165 0.6125 0.6109 0.6096 0.6106 0.5811 0.5619 0.5138
0.32 0.6731 0.6682 0.6662 0.6646 0.6664  0.6308 0.6116 0.5556
0.36 0.7232 0.7173 0.7151 0.7130 0.7161 0.6745 0.6563 0.5934
0.40 0.7674  0.7605 0.7580 0.7555 0.7600 0.7130  0.6963 0.6276
0.44 0.8061 0.7981 0.7955 0.7926 0.7985 0.7468 0.7323 0.6587
0.50 0.8548 0.8453 0.8427 0.8391 0.8475 0.7899 0.7794 0.7003
0.60 0.9149  0.9032 0.9014 0.8965 0.9085 0.8454  0.8425 0.7585
0.68 0.9476  0.9348 0.9343 0.9288 0.9424 0.8786 0.8814  0.7969
0.76  0.9699  0.9568 0.9578 0.9521 0.9568 0.9042 0.9121 0.8295
0.84 0.9841 0.9718 0.9741 0.9687 0.9813 0.9241 0.9361 0.8572
0.92  0.9926 0.9818 0.9850 0.9803 0.9908 0.9397 0.9545 0.8807
1.00 0.9971 0.9883 0.9919 0.9881 0.9961 0.9518  0.9684 0.9006

As stressed earlier it could be remembered that the kinetic expressions
derived here for an isotropic reaction may hold equally well for an anisotropic
reaction. In the latter case the elongations to be used for calculation of the
decomposition curve are different from the geometric ones determined by
microscopy. It is supposed, however, that the particles are of uniform shape.
This is an assumption which probably will never be strictly obeyed, but is
believed to be considerably nearer the truth, than that the particles should
be completely nonuniform. The decomposition should then have occurred as
for a sample of unisized particles, the particle size distribution so being without
any influence on the kinetics. For this reason the experimental decomposition
curves may very well correspond to somewhat narrower particle size distri-
butions than could be determined by microscopy. We may therefore conclude,
that the deviations from the simplest kinetics for decomposition of a solid
(unisized spheres or cubes) can be quantitatively explained by taking the
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particle shape and size distribution into consideration, though remembering
that the parameters to be used in the explanation do not need to be identical
with those determined from the outer geometrical properties of the particles.

In a later paper will be discussed some real particle size distributions and how to
obtain the best approximations to the distribution models presented here.
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