A Preparative and X-Ray Powder Diffraction Study of the Polysulfides Na₂S₂, Na₂S₄ and Na₂S₅

ERIK ROSEN and RAGNAR TEGMAN

Department of Inorganic Chemistry, University of Umeå, S-901 87 Umeå, Sweden

Pure, well-crystallized samples of the Na-polysulfide phases Na₂S₂, Na₂S₄, and Na₂S₅ have been prepared by the reaction between anhydrous Na₂S and S(l) at elevated temperatures. These polysulfide phases were characterized by the X-ray powder diffraction method, and the following values of the cell parameters were obtained: for Na₂S₂ (with hexagonal symmetry), $a = 4.4869 \pm 0.0005$ Å, $c = 10.2210 \pm 0.0015$ Å, for Na₂S₄ (with tetragonal symmetry), $a = 9.5965 \pm 0.0008$ Å, $c = 11.7885 \pm 0.0016$ Å, and for Na₂S₅ (with orthorhombic symmetry), $a = 7.6505 \pm 0.0009$ Å, $b = 14.5036 \pm 0.0020$ Å, $c = 5.8430 \pm 0.0008$ Å.

In addition, metastable phases of Na₂S₄ and Na₂S₅ were prepared.

K nowledge of sulfide melts and the interaction between sulfur and sulfide melts is quite meagre. It thus appears fruitful to investigate alkali sulfide systems, where many different polysulfides are formed. In our department, work is progressing to establish conditions for the formation of Na-polysulfides and to determine their structures in solid and liquid state. In the system Na₂S – S there exist three stable intermediate phases, Na₂S₂, Na₂S₄, and Na₂S₅. For a proper identification of the solid phases, X-ray powder photographs are most informative and significant.

Well-crystallized samples of high purity are needed for reliable and precise X-ray powder diffraction data. Consequently, the aim of this study was to find a convenient method for the preparation of pure, well-crystallized Napolysulfide phases and to determine some characteristic data, primarily by accurate X-ray powder diffraction data.

EARLIER WORK

Preparation. Methods for the synthesis of pure Na₂S₂, Na₂S₄, and Na₂S₅ are described in Gmelin.¹ Two main methods are indicated: (1) the direct reaction of S(l) with anhydrous Na₂S at elevated temperatures; (2) the dissolution of stoichiometric amounts of Na₂S (or Na) and S in a solvent, most often ethanol or liquid NH₃, followed by evaporation and crystallization.

Acta Chem. Scand. 25 (1971) No. 9

X-Ray powder diffraction investigations. The phase of Na, S,, stable at elevated temperatures (called β -Na₂S₂ by Feher and Berthold ²) has been investigated by several groups: Klemm *et al.*, ² Feher and Berthold, ² Erämetsä and Karlsson ⁴ and by Föppl *et al.*, ⁵ the last-named study being the most extensive and included indexing of observed lines. It could be mentioned that the phase called a-Na₂S₂ (cf. Ref. 2) has appeared only in connection with preparation from ethanol solution.

Since the powder diffraction patterns from these earlier investigations were given in diagrammatic form only, which is quite unpractical from the point of view of identification, we found a re-determination and presentation of measured $\sin^2\theta$ -values to be

warranted.

The phases Na₂S₄ and Na₂S₅ were studied by Feher and Berthold,² who presented results merely in the form of "Strich-Diagramme" without any interpretation. Some years later, Erämetsä and Karlsson indexed some lines of the powder pattern for Na₂S₄ but their meagre experimental values did not permit reasonable conclusions, which also can be shown by statistical considerations.

PREPARATIVE WORK

Polycrystalline pure samples of Na₂S₂, Na₂S₄, and Na₂S₅ were prepared by the reaction between anhydrous Na₂S and elemental sulfur, according to the reaction formula

$$Na_2S(s) + nS(l) \rightarrow Na_2S_{n+1}(s,l)$$

For these preparations commercial sulfur (spectrographically standardised sulphur crystals, Johnson and Matthey Chemicals) was used directly while pure anhydrous Na₂S had to be prepared. Anhydrous Na₂S and the Na-polysulfide phases are extremely hygroscopic and very sensitive to humid air oxidation. Therefore, all handling operations, such as weighings and mixings, were performed in a dry box, filled with purified and

dried N_2 , where the H_2O -content was kept at the level of 2-10 ppm.

Preparation of pure, anhydrous Na_2S . In the starting material, recrystallized $Na_2S \cdot 9H_2O$ (Merck, p.a.), there are several impurities caused by air oxidation, in particular $Na_2S_2O_3$, Na_2SO_3 , Na_2S_2 , and NaOH. The total impurity content amounts normally to about 1-2 %. To obtain pure, anhydrous Na_2S , the following procedure was used. The main part of the hydration water was removed according to Kapylov 'by slowly heating under vacuum to 300°C. To remove the remaining water and all the impurities mentioned, a second heat treatment at about 900°C was followed. Predried Na₂S was intimately mixed with about 10 % Na₂S₂ and the mixture put into a carbon boat, which then was placed in a tube-furnace. A gas mixture containing about 50 % H, and 50 % N, both carefully purified from O_2 by passage through hot activated Cu on kieselguhr, from CO_2 with concentrated NaOH-solution and from H_2O by passage through $P_2O_3(s)$, was constantly passed through the furnace. The temperature was then slowly raised to $900^{\circ}C$ and kept there for about 5-10 h. Under these conditions, Na₂S₂ and H_2 will firstly transform NaOH to Na2S and H2O and then H2 will react with excess Na2S2 as well as with the oxygen-containing species to form Na2S, H2O and H2S. It should be noticed that the addition of Na₂S₂ to the predried Na₂S is necessary to remove NaOH from the

The anhydrous product thus obtained is quite white and the analysis according to Bethge indicated a value of 100.0 ± 0.2 % of Na₂S. It could be mentioned that the white colour is a strong indication of high purity; e.g., the presence of about 0.1 %

polysulfide will give a faint but distinct discolouration.

Preparation of pure Na_2S_2 , Na_2S_4 , and Na_2S_5 . Stoichiometric amounts of anhydrous Na_2S and S were carefully mixed by grinding and then put into a pyrex tube which was evacuated and sealed. A heat treatment procedure as indicated in Table 1 proved to yield quite pure and well-crystallized products for all the three Na-polysulfide phases.

Some comments to the suggested preparation method may be justified: It is favourable that the reactions occur at moderate temperatures yielding solid polysulfides, since the melted polysulfides will attack the glass walls. This procedure is also recommended in order to avoid high sulfur pressure in the tube with risk of explosion. However, to ensure complete reactions the temperature is raised for a relatively short time so that a homogeneous melt will be obtained. A treatment period of ½ h gave no indication of

crystallization

Moment	Reaction temp. (°C)	Reaction time (h)	Comments
Step 1	200 – 230	10-12	Solid-state reaction, 80-90 % conversion
Step 2	300 - 500	1/2	Liquid state reaction, complete conversion
Step 3	200 - 220	1-10	Tempering until complete

Table 1. Heat treatment procedure for the preparation of Na-polysulfides.

corrosion. On cooling, the polysulfides generally form a glass. A well-crystallized phase will be obtained after crushing at room temperature and tempering in a sealed tube at about 200° C.

The melting points, which are given in Table 5, were determined in connection with phase equilibria studies of the system Na₂S-S to be described elsewhere. The colours indicated (see Table 5) are those for coarse, polycrystalline samples.

Table 2. X-Ray powder diffraction data for Na_2S_2 at 24°C taken with $CuK\alpha_1$ -radiation $(\lambda=1.54051~\text{Å})$ and using $Pb(NO_3)_2$ $(\alpha=7.8572~\text{Å})$ as an internal standard.

h k l	$I_{ m obs}$	$10^5 \sin^2 \theta_{ m obs}$	10⁵⊿	d _{calc} , Å	
0 0 2	v w	2262	-10	5.110	
100	m	3931	$-\frac{2}{2}$	3.886	
101	8	4495		3.632	
1 0 2	88	6213	12	3.093	
103	88	9045	4	2.562	
110	8.8	11815	27	2.243	
114	\mathbf{m}	13015	-1 -8 -1	2.135	
112	w	14052	-8	2.054	
2 0.0	vw	15716	-1	1.943	
201	w	16274	-11	1.909	
202	m	17993	4	1.816	
105	8	18146	19	1.809	
006	vw	20443	-2	1.703	
203	m .	20832	3	1.688	
204	w	24789	-15	1.547	
210	vvw	27500	-5	1.469	
2 1 1	v w	28065	-8	1.454	
2 1 2	m	29778	1	1.412	
205	8	29938	23	1.408	
116	w	32229	-4	1.357	
213	m	32608	-9.	1.349	
300	8	35374	10	1.295	
008	vw	36343	-4	1.277	
214	m	36583	-9	1.273	
2 1 5	m	41710	7	1.193	
118	w	48130	-5	1.110	

Table 3. X-Ray powder diffraction data for Na₂S₄ at 23°C taken with $\text{Cu}K\alpha_1$ -radiation ($\lambda = 1.54051$ Å) and using Pb(NO₂)₂ (a = 7.8570 Å) as an internal standard. The accepted (h,k,l)-values satisfy the condition h+k+l=2n.

h k l	$I_{ m obs}$	$10^5 \sin^2 \theta_{ m obs}$	10⁵⊿	$d_{ m calc}$, A
101	m	1061	-10	7.443
200		2571		
112	v v w	2991	-6	4.798
	w	,	-5	4.450
	88	3654	6	4.033
202	w	4278	-6	3.721
103	m	4482	-4	3.637
220	v w	5178	25	3.393
301	88	6230	6	3.087
310	v w	6437	-5	3.033
0 0 4)	m	6840	10	2.947
2 2 2}			-21	2.940
213	88	7068	6	2.898
312	88	8152	3	2.698
3 2 1	w	8805	4	2.596
204	v w	9414	7	2.511
400	m	10298	-7	2.399
411	8	11368	-9	2.283
2 2 4	8	11984	1	2.225
3 2 3	8	12220	4	2.203
420	$\mathbf{v} \ \mathbf{v} \ \mathbf{w}$	12894	11	2.146
3 1 4	w	13285	13	2.114
3 3 2			-17	2.112
215	w	13892	-1	2.066
422	\mathbf{m}	14590	0	2.017
413	v w	14793	1	2.003
3 0 5 4 0 4	8	16494	25	1.898
206	m	17157 17955	21	1.861 1.818
512	m m	18456	10	1.793
3 2 5	m	19060	14	1.764
503	vvw	19960	15	1.724
440	8	20613	1 1	1.697
415	m	21611	-12	1.656
316	m	21806	-12	1.649
530	m	21920	20	1.646
523	8	21920	0	1.623
514)	0		6	1.586
5 3 2	$\mathbf{v} \mathbf{w}$	23584	-23	1.585
217	v w	24158	19	1.568
611	v w	24287	28	1.564
602	vw	24878	-18	1.544
505	vw	26790	15	1.489
3 3 6	v v w	26971	8	1.483
4 4 4)		i	3	1.470
6 2 2	v w	27445	-21	1.470
613	s	27679	5	1.464
4 2 6	v w	28251	ŏ	1.449
534	vvw	28713	-17	1.437
3 2 7	v w	29291	-1	1.423
208	v v w	29872	-26	1.409

Table 3. Continued.

5 4 3	l vw	30239	-12	1.400
516	m	32102	-14	1.359
6 2 4	w	32581	-14	1.349
6 3 3	w	32860	- 33	1.344
7 1 2	vvw	33929	-16	1.322
$\begin{cases} 6 & 4 & 2 \\ 1 & 0 & 9 \end{cases}$	w	35240	38 17	1.298
5 4 5	w	37076	- 5	1.265
4 0 8 7 1 4	v w	37657	10 25	1.256 1.233
7 3 2	v w	39061	-5	1.232
6 3 5	vvw	39648	-10	1.223
4 2 8	vvw	40199	-5	1.215
6 5 3	v w	43124	-9	1.173

Table 4. X-Ray powder diffraction data for Na_2S_5 at 24°C taken with $CuK\alpha_1$ -radiation ($\lambda=1.54051$ Å) and using $Pb(NO_3)_2$ ($\alpha=7.8572$ Å) as an internal standard.

		1 1		$d_{ m calc}, { m ilde A}$
0 2 0	m	1128	0	7.252
011	v w	2015	-5	5.420
1 2 0	v v w	2150	8	5.263
101	m	2756	5	4.644
111	s	3037	4	4.422
1 2 1	s	3882	$\begin{array}{c} 4 \\ 2 \end{array}$	3.911
200	w	4055	0	3.825
0 3 1	S	4275	-1	3.725
2 1 0	8	4338	1	3.699
0 4 0	m	4521	8	3.626
1 3 1	S	5291	1	3.349
2 0 1	v w	5797	5	3.200
2 1 1	m	6077	3	3.125
2 3 0	\mathbf{m}	6594	1	3.000
2 2 1	s	6926	5	2.928
050	v w	7060	9	2.901
141	88	7265	0	2.858
102	w	7974	9	2.729
1 5 0)	m	8079	-14	2.712
0 2 2 j	111	1	0	2.710
1 1 2	\mathbf{w}	8250	3	2.682
2 3 1	S	8339	8	2.669
2 4 0	v w	8551	-16	2.632
0 5 1	v w	8786	- 3	2.598
060	m	10155	1	2.417
2 4 1	m	10306	1	2.399
202	$\mathbf{v} \mathbf{w}$	11014	8	2.322
3 1 1)	vw.	11147	4	2.308
1 6 0)		i i	- 20	2.305
2 1 2	v v w	11305	17	2.293
3 2 1	m	11993	4	2.225
2 2 2	v · w	12131	- 3	2.211
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v w m	12475 12848	$-\frac{2}{5}$	2.181 2.149

Acta Chem. Scand. 25 (1971) No. 9

Table 4. Continued.

Table 4. Continue	3a.			
260	m	14217	9	2.043
152	w a	15014	-2	1.988
302	vw	16062	-12	1.921
3 2 1		16366	10	1.905
	m .			
113	v v w	16932	-4	1.872
062	w	17101	-4	1.862
1 2 3	$\mathbf{v} \mathbf{w}$	17802	20	1.827
401	$\mathbf{v} \mathbf{w}$	17945	-11	1.818
0.80	w	18050	-1	1.813
252	w ,		-7	1.813
3.32	w	18610	-2	1.785
271	v v w	19630	18	1.739
213	w	19978	01	1.723
3 4 2	m	20590	3	1.698
2 6 2)			_ĭ	1.674
1 4 3	v w	21158	3	1.674
280	** ***	22102	-3	1.638
	v . w	004770		1.625
4.4.1	w	22470	7	
053	v v w	22685	-6	1.617
450	v v w	23272	3 '	1.597
4.12	v w	23468	17	1.591
281)	v w	23844	1	1.577
190	V VV		-15	1.577
2 4 3	w	24212	5	1.566
091	v w	24582	-1	1.554
272	v w	24829	3	1.546
0 8 2)		95010	16	1.540
451	v w	25018	11	1.540
163	$\mathbf{v} \mathbf{w}$	26794	-13	1.488
511	v w	27338	-23	1.473
442	v w	27672	-10	1.464
014)	¥ 17		22	1.453
4 6 1	v v w	28109	-1	1.453
104	** ***	28807	-11	1.435
	v w			1.435
282	v w	29045	11	
3 4 3	v v w	29260	-6	1.424
5 4 0	w	29875	21	1.410
3 7 25			-19	1.409
470	$\mathbf{v} \mathbf{v} \mathbf{w}$	30036	-2	1.405
173	v w	30466	-8	1.395
541	v w	31592	0	1.370
3 5 3	v w	31824	10 14	1.366
2 10 1	$\mathbf{v} \mathbf{w}$	33995	-2	1.321
363	v w	34933	17	1.304
630	v w	39034	4	1.233
5 0 3)	**		13	1.203
640}	w w	40994	-10	1.203
0 7 0 1			- 10	1.200

Metastable phases. We have found a metastable phase for each of Na₂S₄ and Na₂S₅. These are formed from subcooled liquid Na₂S₄ and Na₂S₅, respectively. The metastable phases undergo transitions to corresponding stable phases after some weeks, even at room temperatures. For the metastable phase of Na₂S₄ it was possible to take an X-ray powder photograph, which showed a very large number of diffraction lines and which was quite different from those of the other Na-polysulfide phases.

i ia. Seli.

X-RAY POWDER DIFFRACTION INVESTIGATIONS

Apparatus. Powder photographs were taken with $\text{Cu}K\alpha_1$ -radiation in a Guinier-Hägg type camera ($\lambda=1.54051$ Å) with $\text{Pb}(\text{NO}_3)_2$ ($\alpha=7.8575$ Å at 25°C) as internal standard. To prevent disturbance from moisture, the samples were enclosed between two tapes. Conc. H_2SO_4 was placed in the camera and vacuum applied.

The powder diffraction lines were measured using the technique, described by Hägg, with a scale printed on the film prior to development. The observed values of $\sin^2\theta$ and of relative intensities, I, are given in Tables 2, 3, and 4 for the polysulfides Na₂S₂, Na₂S₄, and Na₂S₅, respectively. The intensities were visually estimated following the 6-fold scale: ss=very strong, s=strong, m=medium, w=weak, vw=very weak, vvw=extremely weak. In Tables 2-4 are also given the calculated quantities $d_{\rm calc}$ and $\Delta = (\sin^2\theta_{\rm obs} - \sin^2\theta_{\rm calc})$.

Indexing. To be able to index the $\sin^2\theta_{\rm obs}$ -values for Na₂S₄ and Na₂S₅ a general indexing method was developed. By this method, which is an extension of the method suggested by de Wolff, ¹⁰ the indexing procedure can be performed without any a priori values of the cell parameters and of the symmetry. The reciprocal cell parameters thus obtained were used in a computer program, PIRUM, ¹¹ for a least-squares refinement of the cell dimensions. Values of the refined cell parameters are given in Table 5 (the errors indicated are 3 standard deviations).

It can be mentioned that many of the $\sin^2\theta$ -values obtained for Na₂S₄ can be indexed with a cubic unit cell with a=16.64.

Using observed density values (see Table 5) the number of formula units, Z, in the unit cells were obtained. The densities were determined by means of the flotation method, ¹² using mixtures of $\mathrm{CCl_4}$ and $\mathrm{CHBr_3}$ as immersion mediums. At a later stage in our work we succeeded in preparing single crystals of $\mathrm{Na_2S_4}$ from ethanol solution. Weissenberg and rotation photographs around [100] and [001] showed the crystals to be tetragonal with the approximate

Table 5. Colour, melting point, density and crystal data for each of the stable phases Na₂S₂, Na₂S₄, and Na₂S₅.

Phase	Colour	Melting- point (°C)	Density (g/cm³)	Crystal symmetry	Formula units	Cell parameters
Na ₂ S ₂	Yellow	482 ± 2	$d_{\mathrm{obs}} = 2.02$ $d_{\mathrm{calc}} = 2.05$	Hexagonal	Z=2	$a = 4.4869 \pm 0.0005 \text{ Å}$ $c = 10.2210 \pm 0.0015 \text{ Å}$ $V = 178.20 \text{ Å}^3$
Na_2S_4	Olive- green	294 ± 2	$d_{\mathrm{obs}} = 2.12$ $d_{\mathrm{calc}} = 2.13$	Tetragonal	Z=8	$\begin{array}{l} a = 9.5965 \pm 0.0008 \text{ Å} \\ c = 11.7885 \pm 0.0016 \text{ Å} \\ V = 1085.6 \text{ Å}^3 \end{array}$
Na_2S_5	Brick- red	265 ± 3	$d_{\mathrm{obs}} = 2.08$ $d_{\mathrm{calc}} = 2.11$	Ortho- rhombic	Z=4	$\begin{array}{l} a = 7.6505 \pm 0.0009 \text{ Å} \\ b = 14.5036 \pm 0.0020 \text{ Å} \\ c = 5.8430 \pm 0.0008 \text{ Å} \\ V = 648.34 \text{ Å}^3 \end{array}$

unit cell dimensions a = b = 9.60 Å, c = 11.79 Å, which agrees quite well with the results obtained from the powder data (cf. Table 5). However, the occurrence of reflection satellites on the photographs as well as some extra powder diffraction lines may indicate an OD-structure. An extended structural investigation of this phase is in progress.

Acknowledgements. We are indebted to Professor Nils Ingri for his interest in this work and for comments on the manuscript. The work was financially supported by grants from the 1959 are fond för teknisk och skoglig forskning samt utbildning. Dr. Michael Sharp is thanked for revision of the English text.

REFERENCES

1. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Natrium, Ergänzungsband, Lieferung 3 (1966) 1060.

2. Feher, F. and Berthold, H. J. Z. anorg, allgem. Chem. 273 (1953) 144.

3. Klemm, W., Sodomann, H. and Langmesser, P. Z. anorg. allgem. Chem. 241 (1939)

4. Erämetsä, O. and Karlsson, K. Acta Polytech. Scand. 15 (1961) 5.

Föppl, H., Busmann, E. and Frorath, F. K. Z. anorg. allgem. Chem. 314 (1962) 12.
 de Wolff, P. M. Acta Cryst. 14 (1961) 579.
 Kapylov, N. I. Zh. Neorg. Khim. 13 (1968) 529.

8. Bethge, P. O. Anal. Chem. Acta 9 (1953) 129.

9. Hägg, G. Rev. Sci. Instr. 18 (1947) 371. 10. de Wolff, P. M. Acta Cryst. 10 (1957) 590.

11. Werner, P. E. Arkiv Kemi 31 (1970) 513.

12. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham 1962, Vol. III.

Received February 11, 1971.