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The transition frequencies in an NMR
spectrum are usually derived as differ-
ences between the eigenvalues of the Ha-
miltonian operator matrix, and the intensi-
ties are then calculated from the corre-
sponding eigenfunctions. An alternative
way of deriving an NMR spectrum is given
by the so-called direct method.! In this
method the transition frequencies are ob-
tained directly as eigenvalues to the Ham-
iltonian derivation superoperator.

The NMR spectrum in the presence of a
strong r.f. field, such as the double quantum
spectrum, may be derived by a transforma-
tion to the rotating frame. In the indirect
method the eigenvalues and eigenfunctions
to the rotating frame Hamiltonian must
be calculated, and the double quantum
transition frequencies are then obtained
from the criterion of near-degeneracy of
the corresponding eigenvalues.®? :

It is the purpose of this paper to show
that double quantum spectra may be
derived using the direct method without
going the roundabout way of solving the
eigenvalue problem of the rotating frame
Hamiltonian.

Theory. The nuclear spin Hamiltonian
operator in the frame rotating with the
angular frequency o of the perturbing r.f.
field H, is given by

V=H%4o I'—yH, I 1)

Here H° is the spin Hamiltonian in the
laboratory frame, y is the gyromagnetic
ratio of the nuclei, I* and I* are the Car-
tesian components of the spin angular
momentum operator I. The energies in eqn.
(1) are expressed in angular frequency
units. Let us call the derivation superopera-
tors corresponding to the three different
contributions to V for A°, A* and A*. The
total derivation superoperator correspond-
ing to V is called 4. :

Since H® commutes with I* so do the
derivation superoperators A° and A4*. This
means that the matrix representation of
A°+ A% can be made blockwise diagonal,
by choosing the basis operators as eigen-
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operators to the A* derivation super-
operator with eigenvalues wu with u=
0,+1,+2, etc. Basis operators with this
property ¢ are the shift operators R,
which transform one eigenstate k of the
spin Hamiltonian H® into another eigen-
state j.

The transition frequencies are given by
the eigenvalues of the A° matrix; the single
quantum transitions are found from the
eigenvalues in the |u|=1 blocks, while the
double quantum transitions are found
from the eigenvalues in the |u|=2 blocks,
etc. Alternatively it may be said that the
transitions are found at frequencies w for
which we have singularities in the different
blocks of the matrix A°+ A*. This is true
if we neglect the influence of the strong
perturbing r.f. field H,. If we include A%,
we will no longer obtain singularities in
the strict sense within the u70 blocks,
instead the resonances are found at fre-
quencies o for which we have local minima
in the eigenvalues of the derivation super-
operator A.

The derivation superoperator matrix
can be evaluated without specifying the
basis operators, by using a basis function
representation.®* The matrix elements are

This is a matrix where the two indices jk
determine the row and the indices lm
determine the column. If we choose the
basis functions j, k ... as eigenfunctions
to H°, the A°+ A* matrix will be diagonal
with elements

(A + A%y = By — By + o(M; — M,)  (3)

E;, By, are the eigenvalues of H® belonging
to the states j and k, and M;, M, are the
corresponding magnetic quantum numbers.
The A* matrix is given by

A= — O YH 1 <GIIFI1 +

6y yH, (m| I* (k> (4)

Double quantum transition frequency.
Now consider the double quantum transi-
tion wg between states q and s with
magnetic quantum numbers M =M, + 2.
The corresponding diagonal elements of the
derivation superoperator are given by

(A°+ AF)gqeq=EB—Eq—2 © (5 a)
within the u= — 2 block
and

(A°+ A% qeqs=EBq— By +2 o (6 b)
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within the u=2 block. It is clear that
vanishing eigenvalues within these block
are obtained at the frequency

w=(Hs—Ey)/2

The influence of H, can now be obtained
by including A* and evaluating the eigen-
values of 4. If the diagonal elements of
the matrix are large compared to the off-
diagonal elements, the eigenvalues may be
obtained from perturbation theory. Physi-
cally this means that the double quantum
transition we study is well removed from
all other transitions with which it has an
off-diagonal element in the 4 matrix.

At the double quantum frequency the
two diagonal elements (A°+4 A%)gsq and
(A°+ A%)qqs are degenerate, and the
eigenvalues have to be found from a form
of perturbation theory which is based on
a transformation of the basis operators,
which will introduce off-diagonal elements
to second order in the diagonal elements
of the derivation superoperator.® The
transformation will also introduce a new
A’gqqs off-diagonal element, which is of
second order in the perturbation. The new
diagonal elements to second order in A*
are

A =B,—E—20+

A gt (6a)
2E,"Ey—20—By+ B, —o(M,—M,)
and

7’
sqsq

A/qsqs=Eq’—E5+2 o+
. A% gsuv® (6b)
%'Eq_Es+2w—E"+Ev—w(Mu-—Mv)

The eigenvalues have to be found from a
diagonalization of the corresponding 2x 2
matrix, since the A’gyqs element will en-
sure @ strong mixing of the basis operators.
We need not perform this diagonalization,
however, since it is evident that the eigen-
values will show a minimum when the

A'qqsq  8nd  A’geqe  elements  become
degenerate and equal to zero.
This occurs when
e O S
2 ‘S E,—E,—oM_—M,)

In eqn. (7) the term B;— Eq—2 w has been
dropped in the denominator, since this
term is very small. Using the definition of
A¥q,y in eqn. (4) and the relations 2 w=
E;—E; and M,=M,+2 this can be
rewritten as
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E.—E
= %l +3 (yH,)?
{2 [CIPAIRIOY
¥ By—Fyto (M~ M)

s QI IF|v)e (8)
Y E—E,to (M};—MV)}

This is the same double quantum transi-
tion frequency as derived from the indirect
method.?

Double quantum intensity. The relative
intensity of a transition in the direct
method is given by 1»*

21T, (I¥ R,)|® where R, are the eigen-

P operators corresponding
to the local minima of the derivation super-
operator A. To evaluate the intensity of
the double quantum transition wg, we
therefore need the corresponding ejgen-
operators.

The basis operators, Ry’ of the deriva-
tion superoperator A°+A* as given in
eqns. (2) and (3) have the important
property of annihilating all other eigen-
states of H® except the k state which is
transformed into the j state.*

The transformation of basis operators
used in the perturbation treatment, will to
first order in the perturbation A* give the
new basis operators

Bey'=Reg’ + Beg®
and
Ry =R+ RByP
where R, P=3 R,.*
uv
#8q (9a)
Axﬂl“v e e e
E—E,~20—E,+E,~o(M,—M,)

and B, P=> R,."

uv

#qs (9b)
o M
E,—E+2 o—E,+E,—o(M,—M,)

The terms Egs—E;—2 o may be dropped
in the denominators of these expressions.

The complete mixing of the R, and
R, basis operators at the double quantum
frequency will on diagonalization of the
2 x 2 matrix give the new operators
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Ry =Ry +Rys)vV2 (10a)
Ry=(—Ry +Ry)[VE  (10b)

By, and R,  are the eigenoperators of
the derivation superoperator A to first
order in the perturbation A%, and are the
operators to be used in evaluation of the
intensity of the double quantum transi-
tion «wg,.

Tgq o (yH ){I Tr(I? Ryg) 13+

I Te(I? Ry 1% (11)
The trace in eqn. (11) can be evaluated in
any basis, however the most favourable
choice in this case is a basis of eigenfunc-
tions to H°.

In evaluation of the traces we will con-
sider the contributions to the Ry, operators
one at & time.

The shift operators Ry’ and R, will
not contribute to the double quantum in-
tensity. This follows from the fact that the
Ry,° operator will annihilate all basis func-
tions in the trace except the q state, which
is transformed into the s state (or vice versa
for the Rq.° operator), however, (q|I¥[s)=0
since M =M,+2. Then consider the
contribution from R,,P.

Tr {IY RyP}=yH,

Tr {Iy( S B0 I
U \v%q & E,—E,—o(M,—M,)

(12)

1P
—_ R.°
uzs e Eq—Eu—w(Mu—Mq))}

Using the annihilating property of the
shift operators eqn. (12) can be rewritten
as

VI sy<vYq)

Tr{lY R P} =
T{ sq} )’Hl{vngv_Es_w(Ms_Mv)
{qlIY|u) <s| I*|u) : (13)

" By—EBy—o (M,— M)

Non-vanishing contributions to the sums
in eqn. (13) are only obtained from states
v and u with magnetic quantum numbers
My=M,=M,—1=M,+1, since the I,
IY operators only connect states differing
by wunity in their magnetic quantum
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numbers. If we change the summation
index in eqn. (19) to r (M,=M,—1) and
use the relations 2 w~E,— E, and <(q|I?|r)
={r|I¥|q) this can be rewritten as

I Te(I"RyP}| = |2 yH,

sl IF <] IF) @ (14)
T o—E+ B,
since [<s|I*|r>| = |<{s|I?|r) .
A similar calculation shows that
Tr{IYR P} = — Tr{IB P} (15)

From eqns. (11), (14), and (15) we obtain
the intensity of the double quantum transi-
tion

Ly Eyp 3 S0 SO

1
w—E,+E, (16)
This is the same formula as derived by the
indirect method.?

Conclusion. The previous analysis shows
that the direct method may be used to
evaluate the transition frequencies also in
the presence of a strong r.f. field, including
the appearance of double quantum transi-
tions. The method is applicable also in the
derivation of double resonance spectra,
where a similar transformation to the
rotating frame is made. Although the com-
putational advantages seem to be very
limited in treating the double quantum
spectra, the method has the virtue of in-
corporating the influence of the strong r.f.
field on the transition frequencies in a
straight-forward manner.
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