The Systems K₃AlF₆-Li₃AlF₆ and Rb₃AlF₆-Li₃AlF₆

I. The Phase Diagrams

KAI GRJOTHEIM, JAN LÜTZOW HOLM, MILAN MALINOVSKY and SHAHEER AZIZ MIKHAIEL

Institute of Inorganic Chemistry, The Technical University of Norway, Trondheim, Norway

As a part of an extensive study of the phases and structural relations in alkali cryolite systems, the two binary systems $\text{Li}_3\text{AlF}_6-\text{K}_3\text{AlF}_6$ and $\text{Li}_3\text{AlF}_6-\text{Rb}_3\text{AlF}_6$ have been reinvestigated. The techniques used during the studies were differential thermal analysis (DTA), low and high temperature X-ray diffraction studies, and density measurements. One intermediate compound was found in each system, both melting incongruently, K₂LiAlF₆ at 780°C, and Rb₂LiAlF₆ at 700°C. K₂LiAlF₆ was found to be hexagonal with $a_0=5.593$ Å, $c_0=13.754$ Å, and with 3 formula units in the cell. This is in good agreement with the values published by Winkler on the high-temperature modification of K₂LiAlF₆. Rb₂LiAlF₆ was found to have an orthorhombic structure with $a_0=5.797$ Å, $b_0=11.629$ Å, $c_0=16.203$ Å, and 8 formula units in the cell.

Investigations of complex aluminium fluoride systems started at this Institute around 1950 with an extensive investigation of the NaF-AlF₃ system.¹ This work also included a discussion of cryolite, Na₃AlF₆, and the structure and stability of sodium fluoride-aluminium fluoride mixtures in the molten state.

Since then, much work at this Institute has been devoted to the examinations of the structure and stability of complex aluminium fluoride mixtures and cryolite-alumina mixtures in the solid as well as in the molten state.^{2,3} Recently, this work has been extended to other alkali cryolite systems.^{3,4} The phase transitions and the structure of the compounds K₃AlF₄, Rb₃AlF₆, and Cs₃AlF₆,⁵ and of Li₃AlF₆^{6,7} have been investigated, and the phase diagram of the system Li₃AlF₆ – Na₃AlF₆ has been determined.⁸

In this paper, we present an investigation of the phase diagrams of the two binary systems, Li₃AlF₆ - K₃AlF₆ and Li₃AlF₆ - Rb₃AlF₆. Some works, mainly from the Russian school, have already been published on these systems. However, their results are not at all conclusive. The aim of the present work is therefore to clarify the phase relations in the two systems.

EXPERIMENTAL

(a) Differential thermal analysis (DTA)

The DTA instrument used in the present investigation consists of three major components, a sample holder, a controlled source of heat, and a device for temperature measurements. The sample holder is a nickel block with a thermocouple (Pt/Pt 10 % Rh) for recording the temperature, placed inside the block. The differential thermocouple consists of two long platinum wires welded together with one short Pt 10 % Rh wire. One junction of the thermocouple was immersed directly in the sample, while the other junction was immersed in the reference sample (alumina). Two thin-walled platinum crucibles were used to hold the sample and the reference material. The block was placed inside a vertical tube furnace with Kanthal A wire as heating element.

An automatic recorder was used for measuring and recording the differential temperature. The recorder was a Speedomax G, X – Y recorder (Leeds and Northrup Co., Philadelphia, Penn.) with a D.C. Microvolt Amplifier (range $50-2000~\mu V$). The temperature was measured by a potentiometer (Otto Wolff, Berlin 5881, Germany) used together with a mirror galvanometer (Multiflexgalvanometer, type MGO, Germany). In this way, an accuracy of $\pm 1^\circ$ in the temperature measurements was attained. In some runs, the DTA curves were recorded by a Varian G 2022 Dual Channel Recorder. Here, the accuracy obtained was the same $\pm 1^\circ \rm C$, as without use of the extra potentiometer.

The samples were weighed out in stoichiometric compositions, ground and melted under nitrogen atmosphere. Before cooling, the charge was kept for 5-10 min at a temperature about 10^5 above the liquidus point of the system. Approximately 2 g of the sample were used in each experiment.

(b) X-Ray investigation

A high temperature X-ray camera made at this Institute, similar to that used by Smith, was used for the high temperature measurements. The sample holder was made of Pt 10 % Rh alloy. The camera was connected to a goniometer (Philips PW 1050/25) in conjunction with the supplementary set (type Philips PW 1049) and Philips Electronic circuit panel.

Room temperature X-ray investigations of some mixtures were carried out, using a Guinier camera, Nonius type (Delft, Holland), and $\text{Cu}K\alpha$ -radiation, with the Philips diffractometer (Goniometer PW 1050/25 and Electronic circuit panel), equipped with a scintillation counter.

(c) Density measurements

The density of the compound Rb₂LiAlF₆ was measured at 25°C by a vacuum pycnometric method, using Shell odourless Kerosene as a displacement liquid.

(d) Materials

 $\rm AlF_3.$ Prepared at the Slovak Academy of Sciences, Bratislava, Czechoslovakia, purified by sublimation. Analysis: AlF $_3$ 99.2 – 99.5 %, Al $_2\rm O_3$ 0.5 – 0.8 %, as reported by Matiasovský and Malinovský. 10

KF. Anhydrous KF, laboratory reagent (B.D.H., Poole, England). Dried at 400°C under vacuum for 3 h in a Pt-crucible.

LiF. Certified LiF, for laboratory use (Fisher Scientific Co., Chemical Manufacturing Division, Fair Lawn, New Jersey). Certificate of analysis: Cl 0.01 %, Ba 0.01 %, Pb 0.003 %. Dried et 300% under vacquer for 2 h in a Pt cripible.

0.003 %. Dried at 300°C under vacuum for 2 h in a Pt-crucible.

RbF. Rubidium fluoride for laboratory use (Koch-Light Laboratories, Colnbrook, Bucks, England, as well as E. Merck AG, Darmstadt, Germany) was used. The fluoride was melted in a Pt-crucible under pure N₂ atm., and after cooling, pure crystals were selected. RbF was always handled inside a dry box.

For the preparation of Li₃AlF₆, K₃AlF₆ and Rb₅AlF₆, stoichiometric amounts of the alkali fluoride and AlF₃ were melted together in a Pt-crucible in a purified nitrogen atmosphere. The composition of each of the cryolites was carefully adjusted by adding aluminium fluoride until no eutectic reaction could be observed by DTA.

RESULTS AND DISCUSSION

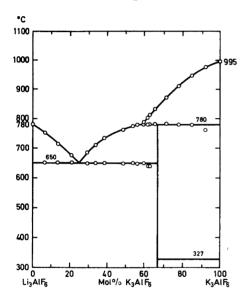
(a) The system $\text{Li}_3\text{AlF}_6 - \text{K}_3\text{AlF}_6$

The system Li₃AlF₆-K₃AlF₆ has been investigated by several authors, but their results do not agree. Bukhalova and Mal'tsev ^{11,12} investigated the system, using visual observation and thermal analysis. They reported that two compounds are formed in the system: an incongruently melting compound with the composition 2 K₃AlF₆.Li₃AlF₆, and another which is formed by a solid state reaction at 506°C, with the composition K₃AlF₆.Li₃AlF₆. By the visual polythermal method, they reported the peritectic point at 762°C and 47 mol % Li₃AlF₆, and the eutectic at 638°C and 80 % Li₃AlF₆. On the basis of the thermographic investigations, they obtained the same peritectic point at 756°C and 47 mol %, and the eutectic at 631°C and 82 % Li₃AlF₆.

at 756°C and 47 mol %, and the eutectic at 631°C and 82 % Li₃AlF₆.

Edoyan et al., is in their studies of systems containing Li₃AlF₆, Na₃AlF₆, and K₃AlF₆, determined the phase diagram of the system K₃AlF₆ – Li₃AlF₆ on the basis of cooling curves. They indicated the presence of 3 congruently melting compounds: 2K₃AlF₆.Li₃AlF₆, 5K₃AlF₆.6Li₃AlF₆, and 3K₃AlF₆.5Li₃AlF₆. The three compounds were reported to melt at 820°, 740°, and 720°C,

Mol %		${\bf Experimental, ^{\circ}C}$				
$\mathrm{Li}_3\mathrm{AlF}_6$	K ₃ AlF ₆	T_{1}	T_2	T_3	$T_{4}^{\ a}$	
100.00	0.00	780.0	_	_	_	
93.50	6.50	756.2	651.0	_	_	
86.46	13.54	717.0	650.0			
78.84	21.16	677.0	652.2	_		
70.54	29.46	685.4	649.0	-		
66.12	33.88	710.2	650.0	-	_	
61.50	38.50	734.0	650.0	_	_	
51.56	48.44	762.0	648.4	_	_	
46.22	53.78	775.0	650.0	-	_	
44.01	55.99	780.4	648.2	_		
40.62	59.38	788.0	779.0	650	_	
38.30	61.70	802.0	781.0	640		
37.12	62.88	812.0	781.2	640		
34.73	65.27	832.2	782.4	_	_	
28.52	71.48	871.0	783.0	. -		
21.98	78.02	908.0	781.0	_	_	
15.06	84.94	945.0	779.0			
7.75	92.25	972.0	762.0	_	_	
0.00	100.00	995.0		_	327.0	


Table 1. DTA data for the system Li₃AlF₆ - K₃AlF₆

^a T₄: phase transition temperature of K₃AlF₆ (see Ref. 5).

respectively. Four eutectic points were found at 760°C and 29 mol % Li₃AlF₆, at 700°C and 50 mol % Li₃AlF₆, at 695°C and 58 mol % Li₃AlF₆, and 640°C

and 81 mol % Li₃AlF₆.

The results obtained for the system Li₃AlF₆ - K₃AlF₆ in the present work are shown in Table 1, and the corresponding phase diagram is presented in Fig. 1. The system contains one incongruently melting compound with the composition 2K₃AlF₆.Li₃AlF₆, corresponding to K₂LiAlF₆. A peritectic point was found at 780°C and 41.5 mol % Li₃AlF₆, and an eutectic one at 650°C and 75 mol % Li₃AlF₆. By the present DTA method, solid solutions of 2 % or more could easily be detected. Since eutectic reactions were obtained until this limit, solid solutions of 2 % or more were ruled out. The X-ray measurements at room temperature showed that both K3AlF6 and K2LiAlF6 were

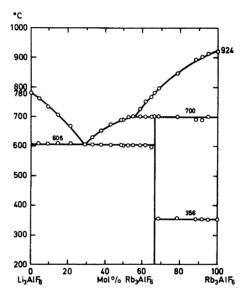


Fig. 1. The phase diagram of the system Li₃AlF₆ - K₃AlF₆ according DTA (cooling curves).

Fig. 2. The phase diagram of the system Li₃AlF₆ - Rb₃AlF₆ according to DTA (cooling curves).

always present in the region between pure K₃AlF₆ and 33.3 mol % Li₃AlF₆, and both K2LiAlF6 and Li3AlF6 in the region between 33.3 mol % Li3AlF6 and pure Li₃AlF₆. This indicates that no other compounds than K₂LiAlF₆ exist in the system at room temperature.

The compound K2LiAlF6 was examined by X-ray diffraction both at room temperature and at temperatures up to 650°C. X-Ray data for K₂LiAlF₆ are given in Table 2. The compound was found to have a hexagonal structure with the lattice parameters $a_0 = 5.593 \pm 0.002$ Å, and $c_0 = 13.754 \pm 0.009$ Å. The cell contains 3 formula units, and the X-ray density is 3.018 g/cm³, compared to the experimental one of 3.00 g/cm³.14,15 The high temperature experiments up to 650°C indicated that no phase transitions occurred in this tem-

$m{hk}l$	Int.	$\sin^2\!\theta_{ m obs} imes 10^4$	$\sin^2\!\theta_{ m calc} \times 10^4$	$d_{ m obs}$
101	s	285	284	4.563
102	\mathbf{m}	379	378	3.957
103	\mathbf{m}	538	535	3.321
110	s	758	759	2.798
(113)	m	(1042)	1040	2.386
(201)	\mathbf{m}	[1042]	1043	2.386
006	\mathbf{m}	`1126´	1127	2.295
202	\mathbf{s}	1136	1137	2.285
203	\mathbf{s}	1297	1293	2.139
204	s	1519	1512	1.976
211	m	1803	1801	1.814
108	\mathbf{w}	2256	$\boldsymbol{2256}$	1.622
300	m	2276	2276	1.615
303	\mathbf{w}	2561	2558	1.522
220	\mathbf{s}	3032	3035	1.399
(223)		(3320)	3316	1.337
(311)	w	(3320)	3319	1.337
313	w	3569	3569	1.289
314	$\mathbf{v}\mathbf{w}$	3790	3788	1.251

s=strong. m=medium. w=weak. vw=very weak.

perature range. Our results are in good agreement with the results obtained by Winkler 14,15 on the so-called "high-temperature" modification of $\rm K_2LiAlF_6$. He reported two modifications of $\rm K_2LiAlF_6$, one "low-temperature" modification, and another "high-temperature" modification made by annealing $\rm K_2LiAlF_6$ at higher temperatures for 1-5 days at temperatures between 450 and 700°C. Winkler 14,15 found both modifications to have hexagonal symmetry. For the "low-temperature" modification, he gave $a_0=5.574\pm0.001$ Å, and $c_0=13.648\pm0.02$ Å, and for the "high-temperature" modification $a_0=5.615\pm0.001$ Å, and $c_0=13.574\pm0.01$ Å. He reported that a phase transition between the two modifications occurs at $470\pm5^{\circ}\rm C$.

As already mentioned, our high-temperature X-ray investigations up to 650° C indicated that no phase transitions occurred within the time of the experiments, which was 2-3 h.

(b) The system Li₃AlF₆-Rb₃AlF₆

The only published work on the phase diagram of the system Li_3AlF_6 – Rb_3AlF_6 is the one by Bukhalova and Mal'tsev.¹¹ In their work, they used visual observation and thermal analysis by recording cooling curves. Their work indicates the existence of one incongruently melting compound with the composition $2\text{Rb}_3\text{AlF}_6$. Li₃AlF₆. By visual observation, they found the peritectic to be at 694°C and 44 mol % Li₃AlF₆, and the eutectic at 606°C and 73 mol % Li₃AlF₆. By the thermographic method, they obtained the

peritectic at 690°C and 44 mol % Li₃AlF₆, and the eutectic at 606°C and 73 mol % Li₃AlF₆.

The results of the present work obtained by the differential thermal analysis are presented in Table 3, and plotted in a phase diagram in Fig. 2. This system is very similar to the system $\text{Li}_3\text{AlF}_6 - \text{K}_3\text{AlF}_6$.

Table 3. DTA data for the system LiaAlFa - RbaAlFa.

Mol	l %		Ez	cperimental,	$^{\circ}\mathrm{C}$	
Li ₃ AlF ₆	$\mathrm{Rb_3AlF_6}$	T_1	T_2	T_3	$T_{\bullet}^{\ a}$	$T_5{}^b$
100.00	0.00	780.0		_	403.0	_
95.67	4.33	763.0	609.0		416.0	_
90.76	9.24	736.2	608.0	_	398.0	_
85.14	14.86	709.0	608.2		412.0	_
78.65	21.35	668.4	608.0	_	_	_
71.07	28.93	606.0		_	405.0	_
66.77	33.23	629.0	606.2	_		_
62.08	37.92	652.6	605.0	-	381.0	_
56.95	43.05	673.2	605.0	_	395.0	_
51.28	48.72	687.0	605.6	_		
50.00	50.00	690.4	602.4			_
47.60	52.4 0	699.0	604.0	_	388.0	
45.02	54.98	701.0	603.4		388.0	_
40.93	59.07	726.2	701.0	603.0	383.0	_
38.04	61.96	751.4	698.0			_
35.03	64.97	766.0	700.6	597.0	_	_
33.30	66.70	780.0	702.2	_		
31.23	69.77	795.6	701.0	_	-	358.0
21.44	78.56	846.0	700.4	-	-	360.0
11.45	88.55	891.0	691.0	-	_	356.0
8.19	91.81	900.0	689.0			356.0
4.77	95.23	912.0	701.0		-	356.0
0.00	100.00	924.0	_	_		356.0

^a T₄: phase transition temperature of Li₃AlF₆ on cooling (non-equilibrium data, see Refs. 6 and 7)

The melting point of pure Rb_3AlF_6 was found to be 924°C, and a polymorphic transformation was found to occur at 356°C. This is in good agreement with earlier values reported by $Holm.^6$ One incongruently melting compound, with the composition $2Rb_3AlF_6$. Li_3AlF_6 , or Rb_2LiAlF_6 , was detected. A peritectic point was found at 700°C and 44 mol % Li_3AlF_6 , and a eutectic point at 605°C and 71 mol % Li_3AlF_6 . This is in fair agreement with the values reported by Bukhalova and Mal'tsev. Li_3 X-Ray investigations of the samples in the system showed that only mixtures of Rb_3AlF_6 and Rb_2LiAlF_6 were present in the region 0-33.3 mol % Li_3AlF_6 , while Rb_2LiAlF_6 and Li_3AlF_6 were the only compounds present in samples in the region 33.3-100 mol % Li_3AlF_6 .

^b T₅: phase transition temperature of Rb₃AlF₆ (see Ref. 6).

The compound Rb₂LiAlF₆ was examined by X-ray diffraction, both at room temperature and at temperatures up to 600°C. X-Ray data for Rb₂LiAlF₆ are given in Table 3. An attempt to relate the structure of Rb₂LiAlF₆ to the hexagonal cell of K₂LiAlF₆ was not successful. However, indexing Rb₂LiAlF₆ on the basis of an orthorhombic structure with $a_0 = 5.797 \pm 0.003$ Å, $b_0 = 11.629 \pm 0.009$ Å, and $c_0 = 16.203 \pm 0.013$ Å, gives a good agreement between experimental and calculated data, as shown in Table 4. The unit cell of Rb₂LiAlF₆ contains 8 formula units, and the calculated density is 3.877 g/cm³ as compared to the experimental one of 3.79 g/cm³.

Table 4. X-Ray data for Rb₂LiAlF₆ (20°C), $\lambda_{\text{Cu}Kx_1} = 1.5405$. Orthorhombic: $a_0 = 5.797 \pm 0.003$ Å, $b_0 = 11.629 \pm 0.009$ Å, $c_0 = 16.203 \pm 0.013$ Å.

111 022 120 113 033 015 040 200 213 222 204 231 233 240 {242} (037) 046 062 146 226 244 251 253 164 324 066 139 400	m w w s s m vs s m vs s w m m w v v w w	243 264 354 422 600 610 700 710 950 970 1076 1123 1307 1416 (1503) 1503	243 266 352 424 598 609 702 706 953 972 1068 1124 1305 1408 1499 1502	4.941 4.750 4.094 3.749 3.145 3.119 2.911 2.891 2.479 2.473 2.348 2.299 2.131 2.050 1.987 1.987
120 113 033 015 040 200 213 222 204 231 233 240 {242} {037} 046 062 146 226 244 251 253 164 324 066 139	w s s s m vs s w m m s vs m w vs w w w vw	354 422 600 610 700 710 950 970 1076 1123 1307 1416 {1503} 1503	352 424 598 609 702 706 953 972 1068 1124 1305 1408 1499 1502	4.094 3.749 3.145 3.119 2.911 2.891 2.479 2.473 2.348 2.299 2.131 2.050 1.987
113 033 015 040 200 213 222 204 231 233 240 {242} {037} 046 062 146 226 244 251 253 164 324 066 139	s s m vs s w m m s vs m vs w	422 600 610 700 710 950 970 1076 1123 1307 1416 {1503} 1503	424 598 609 702 706 953 972 1068 1124 1305 1408 1499 1502	3.749 3.145 3.119 2.911 2.891 2.479 2.473 2.348 2.299 2.131 2.050 1.987
033 015 040 200 213 222 204 231 233 240 {242} {037} 046 062 146 226 244 251 253 164 324 066 139	s m vs s w m m s vs w m w w vs	600 610 700 710 950 970 1076 1123 1307 1416 {1503} 1503	598 609 702 706 953 972 1068 1124 1305 1408 1499 1502	3.145 3.119 2.911 2.891 2.479 2.473 2.348 2.299 2.131 2.050 1.987
015 040 200 213 222 204 231 233 240 {242} {037} 046 062 146 226 244 251 253 164 324 066 139	m vs s w m m s vs w w vs w vs	610 700 710 950 970 1076 1123 1307 1416 {1503} 1515	609 702 706 953 972 1068 1124 1305 1408 1499 1502	3.119 2.911 2.891 2.479 2.473 2.348 2.299 2.131 2.050 1.987
040 200 213 222 204 231 233 240 {242 {037} 046 062 146 226 244 251 253 164 324 066 139	vs s w m m s vs m	700 710 950 970 1076 1123 1307 1416 {1503} 1503	702 706 953 972 1068 1124 1305 1408 1499 1502	2.911 2.891 2.479 2.473 2.348 2.299 2.131 2.050 1.987
200 213 222 204 231 233 240 {242 {037} 046 062 146 226 244 251 253 164 324 066 139	s w m m s vs m w	710 950 970 1076 1123 1307 1416 $\{1503\}$ 1503	706 953 972 1068 1124 1305 1408 1499 1502	2.891 2.479 2.473 2.348 2.299 2.131 2.050 1.987
213 222 204 231 233 240 {242} {037} 046 062 146 226 244 251 253 164 324 066 139	w m m s vs m w	950 970 1076 1123 1307 1416 {1503} 1515	953 972 1068 1124 1305 1408 1499 1502	2.479 2.473 2.348 2.299 2.131 2.050 1.987
222 204 231 233 240 (242) (037) 046 062 146 226 244 251 253 164 324 066 139	m m s vs m w	970 1076 1123 1307 1416 {1503} 1515	972 1068 1124 1305 1408 1499 1502	2.473 2.348 2.299 2.131 2.050 1.987 1.987
204 231 233 240 (242) (037) 046 062 146 226 244 251 253 164 324 066 139	m s vs m w	$ \begin{array}{c} 1076 \\ 1123 \\ 1307 \\ 1416 \\ \{1503 \\ 1503 \\ 1515 \end{array} $	1068 1124 1305 1408 1499 1502	2.348 2.299 2.131 2.050 1.987 1.987
231 233 240 {242} (037) 046 062 146 226 244 251 253 164 324 066 139	s vs m w vw	1123 1307 1416 (1503) (1503) 1515	1124 1305 1408 1499 1502 1516	2.299 2.131 2.050 1.987 1.987
233 240 (242) (037) 046 062 146 226 244 251 253 164 324 066 139	vs m w vw	$ \begin{array}{c} 1307 \\ 1416 \\ (1503) \\ 1503 \end{array} $	1305 1408 1499 1502 1516	2.131 2.050 1.987 1.987
240 {242 {037} 046 062 146 226 244 251 253 164 324 066 139	m w vw	$1416 \ \{1503 \ 1503 \} \ 1515$	1408 1499 1502 1516	2.050 1.987 1.987
\$\ \begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	w	$1503 \\ 1503 \\ 1515$	1499 1502 1516	$\frac{1.987}{1.987}$
(037) 046 062 146 226 244 251 253 164 324 066 139	vw	(1503) 1515	1502 1516	1.987
046 062 146 226 244 251 253 164 324 066 139	vw	1515	1516	
062 146 226 244 251 253 164 324 066 139				1.979
146 226 244 251 253 164 324 066 139	w	1050		
226 244 251 253 164 324 066 139		1670	1670	1.885
244 251 253 164 324 066 139	\mathbf{w}	1688	1692	1.875
251 253 164 324 066 139	\mathbf{w}	1703	1695	1.865
253 164 324 066 139	\mathbf{w}	1780	1770	1.826
164 324 066 139	\mathbf{w}	1825	1824	1.803
324 066 139	m	2009	2007	1.719
$066 \\ 139$	\mathbf{w}	2114	2118	1.675
139	\mathbf{w}	2129	2127	1.670
	\mathbf{m}	2395	2393	1.574
400	\mathbf{m}	2402	$\boldsymbol{2402}$	1.572
	\mathbf{m}	2830	$\boldsymbol{2825}$	1.448
∫ 159 \		∫ 3112 \	3104	1.381
(346)	\mathbf{w}	(3112)	3104	1.381
431	\mathbf{w}	3238	$\boldsymbol{3242}$	1.354
275	w	3419	3421	1.317
(440)		$\{3532\}$	3527	1.296
(364)	\mathbf{w}	(3532)	3530	1.296
259	$\mathbf{v}\mathbf{w}$	3630	3634	1.278
${426 \brace 339}$		(3807)	3814	1.248

vs= very strong. s=strong. m=medium. w=weak. vw=very weak.

In a forthcoming paper, a discussion of theoretical models for the structure of these melts will be given. The experimental results of the present work will be evaluated, together with the results for other cryolite systems. In anticipation of this broader discussion, it may be pointed out that the observed melting point depressions reported here are compatible with the existence of complex ions in cryolite melts.

Acknowledgement. This research project is sponsored by the Royal Norwegian Council for Scientific and Industrial Research, whose support is gratefully acknowledged.

REFERENCES

1. Grjotheim, K. Kgl. Norske Vidensk. Selskabs, Skrifter 1956, No. 5.

- 2. Holm, J. L. Undersøkelser av struktur og faseforhold for en del systemer med tilknytning till aluminium elektrolysen, Lic. Thesis, Institute of Inorganic Chemistry, NTH, Trondheim 1963.
- 3. Jenssen, B. Fase- og strukturforhold for noen komplekse alkali-aluminium fluorider, Lic. Thesis, Institute of Inorganic Chemistry, NTH, Trondheim 1969.
- Mikhaiel, S. A. Investigation of the Phase Diagrams of Some Binary Systems of Alkali Cryolites, Lic. Thesis, Institute of Inorganic Chemistry, NTH, Trondheim 1970.
- 5. Holm, J. L. Acta Chem. Scand. 19 (1965) 261.
- 6. Holm, J. L. Acta Chem. Scand. 20 (1966) 1167.
- 7. Holm, J. L. and Jenssen, B. Acta Chem. Scand. 23 (1969) 1065.
- 8. Holm, J. L. and Jenssen Holm, B. Acta Chem. Scand. 24 (1970) 2535.
- 9. Smith, D. K. Techniques of High-temperature X-Ray Diffraction Using Metal-ribbon Furnaces, Lawrence Radiation Laboratory, University of California, taken from the NORELCO Reporter, Vol. X (1963) No. 1, p. 19.
- Matiasovský, K. and Malinovský, M. Internal Report in the Academy of Sciences, Bratislava, Czechoslovakia 1968.
- 11. Bukhalova, G. A. and Mal'tsev, V. T. Issled. Obl. Khim. Tekhnol. Miner. Solei Okislov 1965 124.
- 12. Mal'tsev, V. T. and Bukhalova, G. A. Zh. Prikl. Khim. 40 (1967) 532.
- 13. Edoyan, R. S., Babyan, G. G. and Manvelyan, M. G. Arm. Khim. Zh. 19 (1966) 408.
- 14. Winkler, H. Heidelberger Beitr. Mineral. Petrogr. 3 (1952) 297.
- 15. Winkler, H. Acta Cryst. 7 (1954) 33.

Received September 23, 1970.