On the Crystal Structures of Nb₅₉O₁₄₇F and Nb₆₅O₁₆₁F₈ ROLF NORIN

Department of Inorganic Chemistry, Chalmers University of Technology and University of Göteborg, P.O. Box, S-402 20 Göteborg 5, and Department of Inorganic and Physical Chemistry, University of Stockholm, Sweden

In his study on the formation of oxide fluorides of niobium(V) Andersson ¹ characterised the two compounds $\mathrm{Nb_{31}O_{nF}}$ and $\mathrm{Nb_{17}O_{42}F}$ as members of the homologous series of structures, $\mathrm{Nb_{3n+1}(0,F)_{8n-2}}$ (n=10 and 11), originally formulated by Gatehouse and Wadsley.² Gruehn ³ prepared two new niobium oxide fluorides

with the compositions 28Nb₂O₅·Nb₃O₇F and 28Nb₂O₅·3Nb₃O₇F. He assumed these compounds to be intergrowths of H-Nb₂O₅ and Nb₃₁O₇₇F, and of Nb₃₁O₇₇F and Nb₁₇O₄₅F, with formulae Nb₅₉O₁₄₇F and Nb₆₅O₁₆₁F₃, corresponding to the intergrowths Nb₄₇O₁₁₆⁴ and Nb₅₅O₁₃₂.^{5,6}

In order to test the validity of Gruehn's

In order to test the validity of Gruehn's assumptions, crystals from his samples have been examined with Guinier and Weissenberg methods at this Department. Using the Weissenberg photographs h0l - h2l of crystals from the single phase samples, the powder patterns of the two oxide fluorides could be indexed in detail. Powder pattern data were refined and cell dimensions calculated on a digital computer, using a program written by Lindqvist and Wengelin' (see Tables 1 and 2).

Table 1. Crystallographic data for Nb₅₀O₁₄₇F. Unit cell dimensions: $a = (73.29 \pm 0.03)$ Å; $b = (3.828 \pm 0.002)$ Å; $c = (21.17 \pm 0.02)$ Å; $\beta = (104.19 \pm 0.04)^{\circ}$. Z = 2. Powder pattern data. Cu $K\alpha_1$ radiation. $\lambda (\text{Cu}K\alpha_1) = 1.5405$ Å.

$I_{ m obs}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	d obs	h k l	$\begin{vmatrix} \sin^2\theta \times 10^5 \\ \text{calc} \end{vmatrix}$	d calc
vw	188	17.75	400	188	17.75
m	530	10.58	$2 \ 0 \ \overline{2}$	531	10.57
vw	692	9.259	2 0 2	690	9.273
vw	1596	6.097	12 0 Ī	1593	6.103
w	2128	5.280	404	2123	5.286
\mathbf{vst}	2257	5.127	0 0 4	2254	5.130
$\operatorname{\mathbf{st}}$	2831	4.578	16 0 Ī	2829	4.580
vw	4062	3.822	110	4065	3.820
4	4229	3.746	(1 1 1	4225	3.747
vst	4229	3.740	[3 1]	4240	3.741
vw	4343	3.696	5 1 0	4346	3.695
\mathbf{vst}	4441	3.655	20 0 Ī	4441	3.655
w	4628	3.580	7 1 0	4628	3.580
$\mathbf{v}\mathbf{v}\mathbf{s}\mathbf{t}$	4884	3.485	206	4880	3.487
w	5001	3.444	9 1 0	5004	3.443
vvw	5055	3.426	10 0 6	5050	3.428
\mathbf{vst}	5266	3.357	$1 1 \overline{3}$	5272	3.355
vvw	5364	3.326	2 0 6	5358	3.328
w	6034	3.136	13 1 0	6038	3.135
vw	6226	3.087	20 0 5	6227	3.087
\mathbf{vst}	7382	2.835	3 1 5	7382	2.835
st	7448	2.822	17 1 0	7448	2.822
\mathbf{vst}	7686	2.778	1 1 5	7686	2.778
${f st}$	8098	2.707	$19 1 \overline{2}$	8099	2.707
vw	8204	2.689	18 0 7	8198	2.690
vw	9037	2.562	0 0 8	9016	2.565
st	9148	2.547	18 0 5	9122	2.550
st	9512	2.497	22 0 7	9519	2.497

Acta Chem. Scand. 25 (1971) No. 1

Table 2. Crystallographic	data for N	${}^{\circ}_{65}{}^{\circ}_{161}{}^{\circ}_{1}{}^{\circ}_{3}. \ \ {}^{\circ}_{1}{}^{\circ}_{1}{}^{\circ}_{1}{}^{\circ}_{1}{}^{\circ}_{1}{}^{\circ}_{1}$	nit cell di	imensions	a = (8)	1.16 ± 0.0	3) Å;
$b = (3.829 \pm 0.002)$ Å; $c = ($	21.15 ± 0.02)	A; $\beta = (103.$	$.97 \pm 0.04)^{\circ}$.	Z=2. I	Powder	pattern	data.
	CuKa ₁ radiat	tion. $\lambda(CuK)$	$(x_1) = 1.5405$	Ä.		_	

$I_{ m obs}$	$ sin^2\theta \times 10^5 $ obs	$d \ m{obs}$	h k l	$\sin^2\theta \times 10^5$ calc	d calc
	1 1		1		
w	534	10.54	$2 \ 0 \ \overline{2}$	531	10.57
vvw	675	9.375	2 0 2	673	9.389
vvw	1777	5.778	14 0 Ī	1767	5.795
vvw	2123	5.286	404	2123	5.286
st	2258	5.126	004	2253	5.132
vw	2923	4.505	18 0 Ī	2921	4.507
$\mathbf{v}\mathbf{v}\mathbf{s}\mathbf{t}$	4224	3.748	3 1 1	4220	3.750
vvst	4389	3.677	22 0 Ī	4380	3.680
	4521	3.623	7 1 0	4515	3.625
vvw	4521	3.023	7 1 Ī	4532	3.618
vw	4779	3.523	608	4776	3.524
$\mathbf{v}\mathbf{v}\mathbf{s}\mathbf{t}$	4905	3.478	206	4896	3.481
st	5274	3.354	1 1 3	5271	3.355
vvw	5333	3.335	18 0 3	5324	3.338
vw	6208	3.091	15 1 0	6199	3.094
st	7395	2.833	3 1 5	7388	2.834
\mathbf{m}	7504	2.812	19 1 0	7500	2.813
$\mathbf{v}\mathbf{v}\mathbf{s}\mathbf{t}$	7666	2.782	115	7666	2.782
st	8095	2.707	21 1 2	8084	2.709
vw	8252	2.681	5 1 5	8250	2.682
vvw	8611	2.625	4 0 8	8599	2.627
vw	9015	2.565	0 0 8	9014	2.565
\mathbf{m}	9127	2.550	20 0 5	9120	2.551

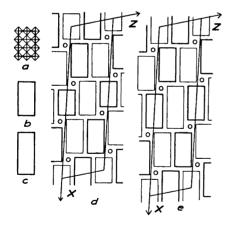


Fig. 1. Idealized projections on the xz-plane showing: a. a block with ReO_3 -structure, having the dimensions $3\times4\times\infty\,\text{Nb}(0,F)_6$ -octahedra; b. a block with $3\times5\times\infty\,\text{Nb}(0,F)_6$ -octahedra; c. a block with $3\times6\times\infty\,\text{Nb}(0,F)_6$ -octahedra; d. the crystal structure of

Nb₅₉O₁₄₇F; and e. the crystal structure of Nb₆₅O₁₆₁F₃. The simplified representation of the block projections, introduced by Allpress et al.⁸, is used. Only the outlines of the blocks of niobium atoms are shown. In (a) the Nb(O,F)₆-octahedra have been drawn with fine lines. In (d) and (e), fine lines indicate blocks with Nb in y=0, and heavy lines blocks with Nb in $y=\frac{1}{2}$. The circles indicate the positions of niobium atoms in tetrahedral positions.

The observed unit cell parameters agree well with those calculated for the intergrowths Nb₅₉O₁₄₇F (a=73.4 Å, b=3.83 Å, c=21.2 Å, $\beta=104.4^{\circ}$) and Nb₆₉O₁₆₁F₃ (a=81.0 Å, b=3.83 Å, c=21.2 Å, $\beta=104.1^{\circ}$). Idealized representations of the two intergrowth structures are given in Fig. 1

Fig. 1.
Weissenberg photographs of all crystals investigated were found to show a characteristic type of disorder. The same type of disorder is observed in Weissenberg photographs of Nb₄₇O₁₁₆ and Nb₅₅O₁₃₄.

Acta Chem. Scand. 25 (1971) No. 1

Using electron diffraction, Allpress 6 has found that in Nb₅₃O₁₃₂, ordered regions, built up of sheets of Nb₂₆O₆₂ alternating with sheets of H-Nb₂O₅, are interrupted by disordered regions. The disorder in the Weissenberg photographs might be due to this lack of order in the crystal structure. Because of this disorder, space groups could not be predicted from the reciprocal lattices. Allpress found Nb_{ss}O₁₃₂ to be C-centered, and the same symmetry is assumed to be valid even for $Nb_{47}O_{116}$, $Nb_{59}O_{147}F$, and $Nb_{65}O_{161}F$.

The general formula $\mathrm{Nb}_{3n+1}(\mathrm{O},\mathrm{F})_{8n-2}$ could be expressed as $\mathrm{Nb}_{3n+2}(\mathrm{O},\mathrm{F})_{8n-4}$, with doubled n values for each member. This formula also includes the intergrowth phases, the members of this series hitherto characterised being: $\mathrm{Nb}_{11}\mathrm{O}_{27}$ ($\mathrm{Nb}_{40}\mathrm{O}_{108}$, n=14), $\mathrm{Nb}_{47}\mathrm{O}_{116}$ (n=15), $\mathrm{Nb}_{25}\mathrm{O}_{62}$ ($\mathrm{Nb}_{50}\mathrm{O}_{124}$, n=16), $\mathrm{Nb}_{53}\mathrm{O}_{132}$ (n=17), $H\text{-}\mathrm{Nb}_{20}\mathrm{O}_{5}$ ($\mathrm{Nb}_{56}\mathrm{O}_{140}$, n=18), $\mathrm{Nb}_{59}\mathrm{O}_{147}\mathrm{F}$ (n=19), $\mathrm{Nb}_{31}\mathrm{O}_{77}\mathrm{F}$ ($\mathrm{Nb}_{62}\mathrm{O}_{164}\mathrm{F}_2$, n=20), $\mathrm{Nb}_{65}\mathrm{O}_{161}\mathrm{F}_3$ (n=21) and $\mathrm{Nb}_{17}\mathrm{O}_{42}\mathrm{F}$ ($\mathrm{Nb}_{68}\mathrm{O}_{168}\mathrm{F}_4$, n=22).

The author would like to thank Dr. R. Gruehn for valuable discussions and for providing crystal samples and Professors A. Magnéli and G. Lundgren for valuable discussions in connection with this work.

This investigation forms part of a research program, supported by the Swedish Natural Science Research Council.

- 1. Andersson, S. Acta Chem. Scand. 19 (1965) 2. Gatehouse, B. M. and Wadsley, A. D.
- Acta Cryst. 17 (1964) 1545.
- 3. Gruehn, R. Naturwiss. 54 (1967) 645.
- Gruehn, R. and Norin, R. Z. anorg. allgem. Chem. 367 (1969) 209.
- 5. Gruehn, R. and Norin, R. Z. anorg. allgem. Chem. 355 (1967) 176.
- 6. Allpress, J. G. J. Solid State Chem. 1 (1969) 66.
- 7. Lindqvist, O. and Wengelin, F. Arkiv Kemi 28 (1967) 179.
- 8. Allpress, J. G., Sanders, J. V. and Wadsley, A. D. Acta Cryst. B 25 (1969) 1156.

Received December 18, 1970.

Studies on Orchidaceae Alkaloids

XXIV.* A Pyrrolizidine Alkaloid from Phalaenopsis cornu-cervi Rchb. f.

SVANTE BRANDÄNGE, BJÖRN LÜNING, CHRISTINA MOBERG and ELISABETH SJÖSTRAND

Department of Organic Chemistry, University of Stockholm, Sandåsgatan 2, S-113 27 Stockholm, Sweden

new alkaloid, cornucervine (C₁₇H₂₉NO₅, AI) has been isolated from Phalaenopsis cornu-cervi Rchb. f. Acid methanolysis of I gave an amino alcohol identified as trachelanthamidine, (-)-exc-1-hydroxymethylpyrrolizidine ($C_8H_{18}NO$), and an optically active compound ($C_{10}H_{18}O_5$) indistinguishable (GLC, MS, NMR) from a synthetic sample of racemic dimethyl 2-isobutylmalate.

The latter compound was synthesised by condensation of methyl isobutyl ketone with diethyl carbonate to ethyl 5-methyl-3-oxo-hexanoate, and thereafter preparation of the cyanohydrine followed by acid methanolysis.

The intense peak M-59 (59=COOCH₃) and the absence of a peak M-73² $(73 = CH_2COOCH_3)$ in the mass spectrum of I demonstrates the nature of the methyl ester grouping in cornucervine, which accordingly has structure I. The absolute configuration of the isobutylmalate residue has not yet been determined.

Experimental. IR, MS, and NMR spectrometry and preparative gas chromatography were performed as previously described.2 Optical rotations were measured on a Perkin-Elmer 141 polarimeter, and analytical GLC was carried out on a 3 % SE-52 on Chromosorb AW DMCS column (0.2×180 cm) using a Perkin-Elmer 900 chromatograph. The high resolution mass spectra were measured on an Atlas SM 1 instrument.

^{*} For No. XXIII in this series, see Ref. 1.