X-Ray Diffractometric Study of α - and β -Flavaspidic Acids

OLAVI ERÄMETSÄ and ANERI PENTTILÄ

Technical University, Otaniemi, Finland, and The Research Laboratories, Medica Ltd., Helsinki, Finland

The crystal structures of α - and β -flavaspidic acids have been determined. α -Flavaspidic acid appears to be orthorhombic and the unit cell dimensions are a=14.60, b=25.53, and c=16.40 Å. β -Flavaspidic acid is monoclinic, a=17.11, b=22.16, and c=19.39 Å, $\beta=89^{\circ}20'$.

Fig. 1. α -Flavaspidic acid. (Magnification \times 150.)

Fig. 2. β -Flavaspidic acid. (Magnification $\times 150$.)

Acta Chem. Scand. 24 (1970) No. 9

tallizes and melts again at 156°C. The latter melting point is that of the β -flavaspidic acid, which can be obtained by recrystallization, e.g. from benzene (Fig. 2).

Boehm ¹ supposed the two forms of flavaspidic acid to be tautomers, the lower melting being the enolic one. About fifty years later Riedl ² suggested that crystal methanol, rather than tautomerism, were the cause of the double melting point of α -flavaspidic acid, but this opinion was soon abandoned. ³ However, on röntgenographic examination a perfect identity of the two modifications in powder form was recorded ⁴, and this again supported the opinion that the keto-enol tautomerism were not the correct interpretation of the two forms. Finally, the tautomerism of flavaspidic acid was settled by Aho ⁵ in a comparative spectral study and determination of the keto-enol equilibrium in different solvents.

Table 1. Observed and calculated structure factors for α -flavaspidic acid.

20	I	$\sin^2\! heta_{ m obs}$	$h \ k \ l$	$\sin^2\!\theta_{ m calc}$
6.05	vvs	0.00278	100	0.00278
6.90	vw	0.00362	020	0.00362
10.36	vs ·	0.00815	030	0.00815
10.78	vs	0.00882	002	0.00884
12.11	vs	0.01113	$2\ 0\ 0$	0.01112
13.69	m	0.01420	2 1 1	0.01424
14.90	m	0.01681	0 4 1	0.01670
15.98	8	0.01932	2 3 0	0.01927
19.05	\mathbf{m}	0.02738	151	0.02764
20.55	vv8	0.03182	$2\ 1\ 3$	0.03192
20.97	8	0.03312	3 2 0	0.03317
21.70	m	0.03543	004	0.03536
23.72	8	0.04224	$2\ 5\ 2$	0.04201
24.45	w	0.04484	3 0 3	0.04491
24.85	\mathbf{m}	0.04629	$2\ 0\ 4$	0.04648
27.35	\mathbf{m}	0.05589	1~7~2	0.05601
28.40	\mathbf{m}	0.06018	$3\ 0\ 4$	0.06038
29.37	m	0.06426	403	0.06437
30.05	m	0.06721	$2\ 1\ 5$	0.06728
34.45	vw	0.08769	0 3 6	0.08771
35.19	\mathbf{w}	0.09138	$2\ 1\ 6$	0.09159
37.43	m	0.10295	611	0.10320
38.49	w	0.10864	$6\ 0\ 2$	0.10892
39.43	vw	0.11380	590	0.11389
41.93	w	0.12802	$5\ 2\ 5$	0.12837
48.35	w	0.16771	3 1 8	0.16737

Acta Chem. Scand. 24 (1970) No. 9

We now present an X-ray diffractometric study of the two forms of flavaspidic acid.

The following conclusions could be deduced from the diffraction data.

 α -Flavaspidic acid appeared to be orthorhombic as calculated from the data in Table 1.

a = 14.60 Å, b = 25.53 Å, c = 16.40 Å.

 β -Flavaspidic acid, on the other hand, appeared to be monoclinic (Table 2). a=17.11 Å, b=22.16 Å, c=19.39 Å, $\beta=89^{\circ}20'$.

 α -Flavaspidic acid, which melted at 92°C, recrystallized when kept in a thermostate at 110°C. The X-ray diffraction diagram obtained from the recrystallized acid was identical with the one obtained earlier for the β -flavaspidic acid.

Table 2. Observed and calculated structure factors for β -flavaspidic acid.

1 4000 2.	Observed und can	salatea stractare	idotois for p navas	piaro aora.
2θ	I	$\sin^2\! heta_{ m obs}$	$h \ k \ l$	$\sin^2\! heta_{ m calc}$
7.99	vs	0.00485	020	0.00485
9.52	vw	0.00689	120	0.00688
10.35	\mathbf{m}	0.00814	$2\ 0\ 0$	0.00814
11.49	vs	0.01002	201	0.00985
12.04	s	0.01100	0 3 0	0.01092
12.83	m	0.01248	0 3 1	0.01250
13.69	vs	0.01420	0 0 3	0.01425
15.60	m	0.01842	300	0.01832
16.30	vs	0.02010	3 0 1	0.02011
16.88	m	0.02154	140	0.02144
17.83	m	0.02402	$2\ 1\ 3$	0.02402
20.09	m	0.03042	0 5 0	0.03033
21.40	m	0.03447	401	0.03442
21.90	\mathbf{m}	0.03608	3 3 2	0.03599
22.95	vvs	0.03958	$0\ 0\ 5$	0.03958
24.10	\mathbf{m}	0.04358	$0\ 6\ 0$	0.04367
24.95	\mathbf{m}	0.04666	144	0.04649
25.89	\mathbf{m}	0.05018	-351	0.05032
26.30	vs	0.05176	162	0.05187
27.60	\mathbf{m}	0.05690	006	0.05699
28.65	w	0.06122	071	0.06102
29.10	vw	0.06311	-531	0.06303
30.40	\mathbf{m}	0.06874	532	0.06883
30.9 0	m	0.07097	5 2 3	0.07103
31.59	\mathbf{m}	0.07409	272	0.07419
32.61	m	0.07882	146	0.07885
33.30	$\mathbf{v}\mathbf{w}$	0.08210	-462	0.08200
34.10	\mathbf{m}	0.08597	-182	0.08585
35.50	\mathbf{m}	0.09294	4 4 5	0.09295
36.10	$\mathbf{v}\mathbf{w}$	0.09601	3 4 6	0.09596
37.30	vw	0.10226	3 2 7	0.10221
38.47	\mathbf{m}	0.10853	3 3 7	0.10828
39.72	\mathbf{m}	0.11541	7 0 3	0.11544
42.00	vw	0.12843	580	0.12851
43.60	w	0.13791	7 3 4	0.13793
44.69	\mathbf{m}	0.14454	761	0.14448
45.60	vw	0.15017	5 9 1	0.15036
46.95	w	0.15868	0 0 10	0.15830
48.10	\mathbf{m}	0.16608	910	0.16605
48.80	vw	0.17066	921	0.17064

Acta Chem. Scand. 24 (1970) No. 9

EXPERIMENTAL

Flavaspidic acid was obtained from Dryopteris assimilis S. Walker rhizomes by the isolation method earlier described. A batch of crude flavaspidic acid was divided into two samples which were separately purified by recrystallizations from methanol and benzene, respectively, until the melting points of pure α - and β -flavaspidic acids were obtained.

X-Ray diffraction data. In the diffractometric studies a Philips X-ray diffractometer (flat plate powder specimen) and $CuK\alpha$ radiation were used. The speed of the goniometer was $2\theta = \frac{1}{2}$ /min. The diffractometric results are presented in Tables 1 and 2. The lines in the tables were corrected with the known lines of sodium chloride.

REFERENCES

- 1. Boehm, R. Ann. 329 (1903) 310.

- Riedl, W. Ann. 585 (1954) 32.
 Riedl, W. Ann. 585 (1954) 209.
 Aebi, A., Büchi, J. and Kapoor, A. Helv. Chim. Acta 40 (1957) 266.
 Aho, E. Über Isolierung und tautomere Formen der Flavaspidsäure und anderer Filixphloroglucinabkömmlinge, Diss., University Turku 1958.
- 6. Penttilä, A. and Sundman, J. Acta Chem. Scand. 15 (1961) 839.

Received April 7, 1970.