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Influence of Crystal Habit and Particle Size Distribution

on the Decomposition of a Solid
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The topochemical kinetics has been derived for the decomposition
of rectangular prismatic crystals with a certain particle size distribu-
tion. It is shown that narrow rectangular and Gaussian size distribu-
tions can result in approximately the same kinetics. For these distribu-
tions, the degree of reaction has been tabulated for selected values
of a reduced time, the crystal length ratios, and a distribution param-
eter. The reduced theoretical decomposition curves are shown to
agree with the experimental ones for vacuum dehydration of cop-
per(II) chloride dihydrate.

The thermal decomposition of a solid is a complex process ! involving several
stages such as nucleation,>* breaking of bonds,*7 desorption, diffusion,®
and heat transfer.?
When bond breaking is the rate determining step, the degree of reaction
may be given by
alt) = 1—(1—k,t)" (1)

where the rate constant %, is dependent on temperature and mean particle
diameter. Deviations from the simple rate law, which is valid for unisized
cubes or spheres (n=3), quadratic plates (n=2) or needles (n=1), will occur
for other crystal habits and for samples with a particle size distribution.

Hume and Colvin 19 have considered the decomposition of a rectangular
parallelepiped while Eckhardt and Flanagan ! considered a monoclinic crystal.
The influence of particle size distribution has been discussed by Trambouze and
Imelik,’? who considered spherical particles with a Gaussian and a log-normal
size distribution. The present work deals with the size distribution of rec-
tangular parallelepipeds.

THEORY

Let us consider a sample of IV prismatic crystals each with the edge lengths
a;, b;, c;. Then the degree of reaction at time ¢ may be calculated from the
volume, ¥ (t), of uncreacted material by
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When the reaction at the surface boundary is the rate determining step, the
thickness of product layer is proportional to time.
Thus the volume of uncreacted material for an anisotropic decomposition
can be written as
: N
V(t) = 3 (a—2k8)(b,—2kt)(c;— 2k ) (3a)

=

where k,, k,, k, denote the individual rate constants for the three main
directions. Introducing the overall rate constant k=>V'kk,k, and the “ki-

netic”’ edge lengths a* = T % b*= 7ck— b;, ¢;*= %c,. we obtain
a b c
N
V(t) = 3 (a;%—2kt)(b;* —2kt)(c;* —21t) (3b)
i=1

whioch is identical to the expression for an isotropic reaction with a rate constant
k for a crystal of dimensions a*, b*, c*. Therefore the mathematical problem
is reduced to a discussion of the isotropic decomposition.

By working out eqn. (3b) and using eqn. (2), the degree of reaction can be
given in terms of initial volume ¥V, surface area 4,, and sum of edge lengths
Ly. The result is

a(t) = 0 bt o (S0 (4)

0

Thus the rate constant £ may be calculated from the initial slope of the de-
composition curve, when the volume-specific surface area A4,/V, is known.
However, this method is very inaccurate due to the rapid change of slope of
the decomposition curve. The rate constant should therefore be calculated
from the decomposition eurve over its whole range. This may be brought
about by polynomial regression analysis or by fitting the experimental data
to a master curve, where the degree of reaction

Ay, Lea,? , Noa,® o
— L m 5
a(u) = 37, u— av, u? 4 v, U (5)
is expressed in terms of a time parameter

u = 2kit/a,, (6)

and a,, the mean of the edge length a;.

The master curve according to eqn. (5) is seen to be independent of the rate
constant and therefore of the temperature but dependent on the specific
surface area. A more universal master curve is obtained by expressing « in
terms of the parameter

x = 2ktfa, - (7

where the cubic mean edge length
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ag = 6V,/4, (8)

is defined as the edge length of a cube with the same specific surface area as
the sample. The degree of reaction then becomes

9LV, , . 216N,V

In the following we shall discuss the influence of crystal habit and particle
size distribution on the coefficients in eqn. (5) and (9). For the first moment we
will consider the crystals to be uniform in shape, which means that the length
ratios I,=b;/a; and l,=c,/a; are the same two for all crystals. In this case the

initial volume may be written as

N
Vo = Ly 3q (10)

where the reduced edge length ¢, is defined as a,/a,,, By dividing the sample
into n fractions, where the i-th fraction consists of AN, crystals with g,
ranging from ¢;,— 4¢/2 to g;+4q/2, the initial volume may be written as

AN,
Aq, 924q9—% 1,1,0,(4N,¢.*+4N ,g,%) (11)

When the total number of crystals N is sufficiently large and Aq is small, the
sum in eqn. (11) may be replaced by an integral. Let further the frequency
AN,/ 4q be given by the function G(g), whereby

a(z) = 3x— as (9)

Vo = lilya,® i
j=1

Vo =lLia,? [ Glg) ¢* dg (12)
Similarly we find
4y = 2+l +lla,? [ Gl) ¢ dg (13)
Ly = 41+l +lya,, [ G(g) ¢ dg (14)
Ny = [, Glo) dg (15)

Rectangular particle size distribution

In this case G(¢) is simply a constant, say g, within the range
1—s8<¢<1+s and zero otherwise. By integration of eqns. (12)—(15) we get

Vo = 2l,1,a,%3(1 +4%) (16)
Ay = 401, +1y+1,1)a,28(1 +52/3) (17)
Ly = 8(1+1, +l)a,.s (18)
Ny =28 (19)
which on insertion in eqns. (5) and (9) give us
_ it +1;0,)(1 +52/3) 141, +1, 1

«(w)

2 3
L+ T+ Y T e
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9(1 +82)(1 +1, +l)l, 1, 27(1 +82)21, 20,2
(1 +8%3)2(1; +ly +13l5) (1482/3)%(0; +ly+1405)°
If the edge length a; represents the smallest of three characteristic edge

lengths a;, b;, ¢; for a crystal, then the smallest crystals are decomposed
completely at the limiting time #n, defined by

x4

a(x) = 3r—

a3 (20b)

2kt = a,,(1—3) (21)
The corresponding limits of » and x are given by
Wiim =—2-Iit"—m =1—s (22)
and the relation "
L2t (L) 4eY3) )

@ 31,05(1 +8%)

For times greater than f, the volumes of uncreacted material for the
smallest crystals are calculated according to eqn. (3b) to be negative. Conse-
quently eqns. (20a) and (20b) should be applied only for values of x, u, and ¢
less than their limiting values. Therefore the distribution function G(g) should
only be related. to the number of crystals not being decomposed totally,
whereby G(g) is to be nonzero within the range u<¢<1 s, when u is greater
than uum. Hence, the degree of reaction should be calculated from

1+s

Vi) = [, ga,8g—u)(lg—u)lg—u)dg

U

= ga,3 [lll2(1 +8)t (il +hl)(1 +5)?
m 4

: _u+(l+ll+l2)(l +s)? w2

2

: I+ 1
R (S (24)

and eqns. (2) and (16) giving
(14s)t (L +l 41 ) (1 +8)3 (1 41y +1lp)(1 +s)? ul

(w) = 1— 8s(1 4-s2) 61,1,8(1 +s?) b 41,1,5(1 +8?%)
1+s s 64+LL—20,—-2l,
TRl U 21 " (25)
and in the special case of cubes:
o (Ls—wpt

The expression in terms of x are more complicated and computations of «(x)
are performed most conveniently by first calculating related value of u ac-
cording to eqn. (23).
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Gaussian particle size distribution

If the distribution function is given by

Glg) =g eXP[ 2<qsl)]

_ 2
)] (27)

eqn. (12) becomes

® 3
Vo = lila,39 fo exp[— 5(

Introducing y =l/_2-- (Q:}) we get
/ 2 sl P dy+V'6 f 'y dy+
l e [/ Vi © Y ’ \/ﬂ/z/s v

96 g2 d 2) assf ] 28
d f V372/s y+ l/ \/S/Z/s dy (28)

For narrow distributions, where s is small, the expression may be ap-
proximated by changing the lower integration limit to —oco. Then the four
integrals take the values of Vi, 0,V n/2, and 0, respectively, whence the
volume

Vo = Vgi’ 890,31 15(1 +82) (29)
Similarly we obtain
=2/ o0 A (60
Ly = 4]/3_”sgam(l +1,+1y) (31)
No= ) 2 (32)

Insertion of these quantities into eqn. (9) yields an expression identical to
(20b). Thus narrow Gaussian and rectangular particle size distributions will
results in approximately the same kinetics.

When the standard deviation related to the Gaussian distribution is denoted

by o, then according to eqn. (22) o=s/V 3. For cubical particles eqn. (20a)

then reduces to
a(l—u)?43¢2
s o )

which is identical to the expression derived for spheres by Trambouze and
Imelik.12
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Nonuniform crystals

Let a, b, ¢, denote the edge lengths along three mutually perpendicular
crystallographic orientations. We will now consider the case, where the edge
lengths are statistical independent and rectangularly distributed within the
ranges a,, (1—s8,) <a<a,, (1+38,); b,, (1—8;) <b<b,, (1+8,); and similar for
c. Then the initial volume, surface area, sum of lengths, and number of

particles are given by
=g f f f abc da db dc = 898,8,8,8,DmC,[AmbuC,.]

29 f f f (ab+bc+-ca)da db dc = 8gs,8,8.a,,b,.c[2(a,,b,, +

Vo

4,

L,

Ny =¢ fffda db dc = 8gs,8,8.4a,b,.,,

Introducing I, =b,,/a,, and l3=c,,/a, We get

nd

+0,Cm +C0m)]
4 f [(@+b-+e)da db de = 8g5,8,8,8ubuCn[4(@n +-bp+cp)]

VoLo — 9ils(1+1, +1y)

216V 2N,

271,22

(-l +hly)?

Al

IURR R AAY

(34)

(35)
(36)

(37)

(38)

Table 1. Degree of reaction for a sample of uniform prismatic crystals with a rectangular

0.01 0.0297

0.9971

1y -1
1, =4
0.0297

1.0000

ll -1
1, =16

0.0297
0.0590

1, -2
1, =4

11 -2

12 -8

0.0298

11 -2
12 «16

0.0298

-4
12-5
0.0298
0.0592
0.0882
0.1167

1y =4
12 «16

0.,0298

1.0000

size distribution. Relative limits for the edge length 8=0.50.

1, -8
12 -8
0.0298
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which are the coefficients in eqn. (20b) for the rectangular distribution param-
eter s equal to zero. This equation should hold for the reduced time u less
than any of the quantities 1—s,, I,(1—s,), and l,(1—s,). Within this region
a sample of crystals of completely nonuniform shape and size may decompose
with just the same kinetics as that of a single crystal. Therefore the largest
deviations from the rate expression for a single crystal should occur for samples
of size distributed crystals when the crystals are uniform.

RESULTS AND DISCUSSION

A FORTRAN-4 computer program RECTA has been written for computa-
tion of the degree of reaction according to eqns. (20b) and (25). Herein the
degree of reaction has been defined as a function, recta (I, l, s, ), of the
length ratios, I, and I,, the particle distribution parameter, s, and the reduced
time, z. The calculations have been. performed on an IBM-7094 computer at
NEUCC in Lyngby and an example of the results are given in Table 1 and
Fig. 1. (A complete table can be obtained by writing to the author).

The reduced decomposition curve turns out to be more sensitive towards
alterations of the length ratios than to alterations in the particle size distribu-
tion. Thus the influence of the particle size distribution can be detected only
for «>0.5, while the influence of length ratios may be detected already at
a=0.2. It is further seen that both factors will exert their greatest influence
on the «,x curve, when x#~0.6, corresponding to «=0.9. Therefore reliable

o a
10 10 |- =
—vq
4 e
2
08 08 B
] /

06 06 //
0.4 / 04 ",

/ ¢
02 / ] 0.2 /

L {
0 02 04 06 08 10 x 0 02 04 06 08 10 x

Fig. 1. Reduced, theoretical decomposition
curves for samples of rectangular prismatic
crystals with a rectangular size distribu-
tion. Curves for recta (1, 1,, 0, «) are drawn
in full for /,=1 and dot and dashed for
ly3=2. 4, 8, and 128 (at top), while recta
(1, 1, 8, x) are shown interrupted for
8=0.3, 0.5, and 1.0 (at bottom).
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Fig. 2. Reduced, experimental decomposi-

tion curves for copper(II) chloride di-

hydrate. Filled circles: Single crystal data

unfilled circles: Polycrystalline data. Fully

drawn curves represent recta (1, 1, s, z)

with §=0.0 (upper curve) and 0.5 (lower
curve).
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values of I;, l;, and s cannot be obtained from the reduced decomposition
curve, unless this has been determined for the entire range of «.

In the following the theory will be illustrated by experimental a,z curves
for the vacuum dehydration of crystals of copper(II) chloride dihydrate.
Single crystals as well as polycrystalline material have been investigated by
a method described previously.!® As the kinetics will later be discussed in
details, this paper presents results only from the decomposition of one single
crystal (0.82 x0.562 X 5.6 mm) and of one 0.5—1.0 mm sieve fraction with the
microscopically determined s=0.6. The influence of the particle size distribu-
tion is demonstrated in Fig. 2, where the single crystal data are seen to be
well represented by recta (1, 1, 0, z), whereas the polycrystalline data con-
centrate about recta (1, 1, 0.5, ). The overall rate constant at 25°C is found
to be 1.42x107% cm h™ for the single crystal and 1.41 X107 cm h for the
sieve fraction.

It has thus been shown that the kinetics of the vacuum dehydration of
copper(II) chloride dihydrate may be explained by the topochemically derived
rate expression, which is valid for decompositions, where neither nucleation
nor diffusion is the rate determining step. For such cases the application of the
theory to polycrystalline solids yields the same rate constants as those obtained
for single crystals.
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