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Theory of Oscillating Bodies and its Utilization for

Determination of High-temperature Viscosities

D.DUMAS* K. GRJOTHEIM, BB HOGDAHL* and H. A. 0YE

Institute of Inorganic Chemistry, The Technical University of Norway,
N-7034 Trondheim-NTH, Norway

The theory of the damping of oscillating bodies has been discussed
in relation to the determination of viscosities in molten salts. Two
approximated equations for the determination of viscosity from the
damping of an oscillating cylinder have been derived. An oscillation
viscosimeter for measurement of the viscosity of low viscous hy-
groscopic melts up to 1000°C is described. The viscosities for the fol-
lowing pure molten salts have been determined with an oscillating
sphere: MgCl,: 1.790 cP at 800°C, NaCl: 0.975 cP at 810°C, KCl: 0.975
cP at 800°C. The results for NaCl were found to be in severe
disagreement with previously accepted literature values.

The work reported in this paper forms part of a general study on the physico-
chemical properties of molten electrolytes used in the electrowinning of
light metals. The electrolytes of principal interest for these processes are the
alkali-alkaline earth chlorides and the aluminium oxide-alkali cryolite systems.
The object of the present work was to develop a satisfactory method for measur-
ing viscosities of low-viscous hygroscopic melts up to 1000°C.

Several methods have been used for the measurement of viscosities at
high temperatures.l® The principles underlying the most frequently used
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§ Fig. 1. Methods for determination of

viscosity. a) Flow through capillary tube.

b) Falling body. c¢) Rotation with constant
velocity. d) Torsional pendulum.
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HIGH-TEMPERATURE VISCOSITIES 511

methods are shown in Fig. 1. MacKenzie! showed that methods (b) and (c)
were not suitable for viscosity measurements below 0.1 poise although the
last method was used by Bockris and Lowe 7 down to 0.05 poise. Since the
viscosities of interest were around 0.01 poise, serious consideration was given
to only two methods, which are referred to in Fig. 1. These are a) the capillary
tube method and d) the oscillating body method, which is also called the tor-
sional pendulum method (the pendulum can be either a sphere, cylinder, or
a disk).

Both of these methods have been used for the investigation of low viscous
fused salts and metals up to 1250°C.! Several factors precluded the use of the
capillary tube method. These were the difficulty in finding a suitable material
for the construction of the capillary and the alteration in the capillary diameter
resulting from slight etching and recrystallization. Additional difficulties
were encountered in the maintenance of a long zone of constant temperature
in the furnace and the visualization of the flow in the capillary. From these
considerations it would appear that the oscillating body method is the most
suitable. The oscillating body is commonly a sphere and a mathematical
relationship between damping and viscosity for this has been well es-
tablished by Verschaffelt.® Slight changes in the oscillating body must, how-
ever, be expected as a result of recrystallization or from chemical attack due
to the presence of small amounts of moisture. For this reason the experi-
mental apparatus was designed to use a cylinder as well as a sphere because
the cylinder would be simpler to remachine.

In the following sections we review the final relation for an oscillating
sphere and develop approximate formulas for the relation between viscosity
and damping of a cylinder. Then we present a sketch of the apparatus and
give the results of our preliminary studies.

THEORY

Oscillating sphere. A thorough theoretical treatment of a sphere oscillating
freely in a viscous liquid has been published in a series of articles by Verschaf-
felt & in the years 1915—1919.

Verschaftelt assumed the movement of the liquid to be that of concentric,
rigid spherical shells performing damped, simple harmonic oscillations around
a common z-axis. The liquid was also assumed to exhibit pure Newtonian
behaviour. For small oscillations of the sphere, Verschaffelt gave the following
differential equation for the motion of the rigid spherical shells:

Pow 4 do 0 dw

or? r Or n ot - . (1)

and derived the eqn. (2) which gives viscosity as a function of measurable
quantities:
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_ 3ol 1
1= 4aBT, (2 +Rb,+ P)

P b,R+1
(b, R+1)2+b2R? (2)
b=
1 ﬂT

The symbols are:

: viscosity of liquid, poise

density of liquid, g em™

radius of sphere, cm

moment of inertia of pendulum, g cm?

time of swing in the liquid, s

time of swing in vacuum (air), s

logarithmic decrement of the oscillation (defined as the logarithm
of the ratio of two successive amplitudes of oscillation).

o-cc ..

S RN~

In eqn. (2) & represents the friction of the sphere only, and measured
values of J must be corrected for friction against the other parts of the pen-
dulum. In deriving eqn. (2), J is also assumed to be small, i.e. §<2x.

Eqn. (2) must be solved by trial and error and this is most conveniently
done by a computer iteration.

Oscillating cylinder. No theoretical treatment of a freely oscillating cylinder
has been found in the literature except for the case of a cylinder having infinite
length.® It seems difficult to derive a general expression which would give a
true picture of the motion of the liquid, since the motion of the liquid near
the sharp edges of the cylinder cannot be easily calculated. But we can try

2-axis
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P

1
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(a)

Fig. 2. Cross section of the cylinder and motion of the liquid outside the cylinder surface.
a) Part of the liquid unbound to the surface of the cylinder. b), ¢) Notation for developing
the differential equation for the motion of the liquid: b) vertical shell. ¢) horizontal disk.
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HIGH-TEMPERATURE VISCOSITIES 513

to find a model which is possible to treat mathematically and which is not
so far from the real picture, despite the fact that the main hypothesis of rigid
shells may not necessarily be true. We did this by dividing the motion of
the liquid: (i) into vertical cylindrical shells coaxial with the axis of oscilla-
tion, and (ii) horizontal discs normal to the axis of oscillation. We also assumed,
that both, the shells and the discs, were rigid and performed simple harmonic
oscillations with the same period and damping as the cylinder. We have chosen
to depict the movement of the shells about the cylinder in the following way:
a) The cylindrical rings which are shown shaded in Fig. 2a are divided in two
different volumes by cones which form an angle of 135° with the cylinder
surface. The movement of the shells and discs are extended to the dividing
surface. This does not take into consideration the decrease in movement in
this area near the edge. b) The motion of the two rings is ignored.

For the frictional force the case a) represents an overcompensation and
gives a too low Viscosity for the liquid, and the case b) represents an under-
compensation giving a too high viscosity value.

Liquid motion at the vertical surface of the cylinder. In Fig. 2 we can see
a section of a cylinder with arbitrary height. In the following we define a
quantity equal to half of the height (Z;) minus the radius (R):

a =Zy—R

Analogous to Verschaffelt ® we assume the liquid divided in concentrie cylin-
drical shells. Fig. 2b shows a half section of a liquid shell. The distance from
the z-axis to the shell is 7, the thickness of the shell is dr and half of the height
is taken as r4+a. The oscillation of the shell around the z-axis will give rise
to a frictional force per unit area, F,, on the inner surface. On the outer
surface the frictional force, opposite in sign, will be:

<F—i—a "dr)

If we now assume the shell to rotate a small angle « in unit time: da/dt, we
can equate the work done on the shell by the frictional force to the increase
in kinetic energy of the same shell. Remembering that r(du«/0t) =rw gives the
linear velocity we obtain with reference to Fig. 2b.:

F [2nr 2(r+a)] [F + ____" dr:l [27(r +d7r)2 (r—}—a+dr)(r+dr)] =
= gt (3mv?) = 2qr dr 2(r +-a+dr)e gj aam (3a)

After reduction and collecting only first order terms with respect to dr we
obtain:

a
(20 +) 1P —rlr ) o = r3(r a) (3b)
The liquid is assumed to be pure Newtonian, so that:
dw v
Fv = —ﬂr 51‘* (4)
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‘where 7 is the viscosity of the liquid. The combination of eqn. (3b) and (4)
gives:
Pw 3 1 dw o Jw
W+(7+m)““———° (5)

The solution of this general equation will result in complex hypergeometric
functions. We can make the treatment simpler in the following case:

a=0, cylinder with the height equal to the diameter. Implicit in this model
is that the liquid moves as vertical rigid shells extending up and down to the
angle 135° from the edges of the cylinder. A

a— o0, cylinder of infinite height. Here the differential equation we find
agree with the picture where the motion of the two rings are ignored whatever
the height of the cylinder may be.

Fist case: a=0. Eqn. (5) reduces to eqn. (6):

Pw 4 o o dw

o Ty or q_éi7=0 (6)

This is the same equation as that Verschaffelt obtained for the sphere. Refer-
ring to his work 8 the general motion of a damped harmonic oscillation is given
by the general expression:.

o = i)™ cos (77 1—4(r)) )
The symbols are

o, = angular amplitude of oscillations

= time

distance from the axis of rotation

time of swing

logarithmic decrement or damping constant defined by
S=Ina(t)/u(t+T)]

Here ¢(r) and y(r) are functions of r only and determine how the amplitude
and phase are changed by increasing the distance r from the axis.

The motion described by eqn. (6) will in fact give a wave motion propagat-
ing out in the liquid. The amplitude of the wave is steadily damped down by
the friction due to viscosity of the liquid. Instead of using the form of eqn.
(7) it is more convenient to introduce complex functions and it is well known
that eqn. (7) can be considered the real part of

a, = u(r)et ‘ (8)
where u(r) is a complex function of » and % is a complex constant. In accordance

with the former assumptions for the motion we have the equation for the cylin-
der similar to eqn. (8):

[

ot
N
T
o

«a=24 e¥ 9)
Setting .

U = Uy + 1, (10)

k =lk,+ik,
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HIGH-TEMPERATURE VISCOSITIES 515

and introducing trigonometric functions and comparing with eqn. (7) we
obtain:
ky = —o/T and k, = 2a/T (11)

This equation relates & to 6 and T which both can be determined experi-
mentally.
For the determination of u we first note that from eqn. (8) we get

Oa, "
w = 0= ku e (12)
Inserting eqn. (12) in eqn. (6):
d>uw 4 du 0 \
Ty =0 (1)
with ' L
b = gk/n
Expressing b as a function of the complex quantity from eqn. (10):
b =V (o/nT)(27i—0) (14a)

If ¢ is small relative to 2z, we can neglect it in the above expression and
get:

b =V ag/nT(1+4i) =V 2mp[yTei™t = byeinit (14b)
_V/ 2me
b, = o7

The solution to eqn. (13) is found to be
R3 br+1

— b —b(r—R)
=24 e _bR—}—le (15a)
and the solution of eqn. (6), the real part of eqn. (15b):
» _ E* br+1 —b(r—R)+ kt

As the boundary conditions we have used

1. u=u(R) =4 for r =R
2. u =0 for r— o©

The A in eqn. (15) is the same as in eqn. (9) and hence the first boundary condi-
tion implies the well established assumption that the liquid perfectly wets
the cylinder. The second boundary condition is of course pure analytical.
However, as shown by Verschaffelt 8 for a sphere, in the liquid the damping
of the wave propagating outwards is so pronounced that for all practical
purposes condition 2 above can be used if

exp[—2b(R,—R)]<1
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where R is the radius of the sphere and R,, the radius of the vessel holding
the liquid. In our later experiments with a sphere we have

exp[—2b(R,—R)] ~ 1074L1

justifying the use of the second boundary condition above. We assume this
condition to be fulfilled for the case of a cylinder also.
Second case: @ — co0. The differential equation (5) reduces to:
Pw | 3 do ¢ Jw
T T (16)
We now again try the solution of eqn. (12) and by insertion in eqn. (16) we

find: 2
dw o, 3 E'TL T (17)

This equation can be compared with eqn. (13) in the first derivation. The
only difference is the factor 3 instead of 4 but eqn. (21) is much more dif-
ficult to solve because the coefficient of (1/r)(du/dr) is not even. The details
in the solution procedure is omitted but it can be shown that the solution of
eqn. (17) are Bessel functions. It is possible to rewrite the equation using

Kelvin functions:
_ R\  kery(byr) +i-kety(byr)
ulr) _< 7) Ter, (b B) i ket (b, R) (18a)

The solution of eqn. (16) will be, the real part of eqn. (18b)

_ R\ kery(bor) +1 keiy(byr)
o=k (A r) ker,(byR) +i ket (byR)

Liquid motion at the horizontal surface of the cylinder. By reference to Fig.
2¢ we can derive a corresponding expression for the horizontal sections. If
we choose a disc, having a thickness denoted by dz there exists on the underside
a frictional force per unit area Fy, and on the upper side a frictional force

opposite in sign:
— (Fu+ dz)
0z

Again we assume the disc to rotate around the z-axis at a small angle du/d¢
and we can then equate the work done by the frictional forces on the disc
to the increase in kinetic energy of the same disc. Since the linear velocity of
the disc changes with the distance r from the z-axis, we must perform an
integration over the disc. Noting that in this integration z and dz are constants
we get:

et (18b)

(3—a) (2—a)+dz .
0o aF, O
(',[ Fur ¥ 2nr dr — ;,f (Fh—{— 5 dz) r a5 2nr dr
(s—a)+dz/2 (z—a)—dz/2
9 Jde dw
— 2o (lm V2 — kol ol
of 3 (3mV?%)2nr dr f odzr 9 r % 2nr dr

0

(19)
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HIGH-TEMPERATURE VISCOSITIES 517

The frictional force can be expressed by Newtons viscosity law:

I = —177'752 (20)
Inserting F, and dF,/0z in eqn. (19) and integrating eqn. (19) we finally get
after collecting only first order terms:
Po 4 do o do
G Yiae T = 1)
Now, we can treat the same cases as previously:
First case: a=0. We find the equation corresponding to eqn. (15b):
Zg® bz41
© =k = 711
As R, is equal to Z; in this case eqn. (15) and eqn. (22) becomes identical
which means that the sections can be connected at the line 135° out from the
edges of the cylinder giving rise to no extra disturbances at the connecting
boundaries. '
Second case: a—>00. Eqn. (21) reduces to the following equation:

e—blz—Z)+kt (22)

Fo _ e o

02y o (23)
which is simple to resolve by introducing » as before and using the same
boundary conditions: © = kA e-bE—Z)+k (24)

Moment of the frictional forces. Now we intend to show that it is possible
to write the moment of the frictional forces on the cylinder in the following
form: C = Ldofdt) (25)
L being a constant.

First case: a=0. The moment on the vertical surface:

C, = RF 2rR2Z, (26a)
Referring to eqn. (4):
C, = —4aR?Zn(0w[0r), (26Db)
Inserting eqn. (15b):
U?R?+3bR+3 da

- 2 il
C, = 4nR?Zn BB & (26¢)
For the horizontal sections:
R
C, =2 f rF,2nr dr (27a)
0
Referring to eqn. (20) we find after integration:
Cy = —aRtn (0w[dz), (27b)
Inserting eqn. (22): 277 2
C, = nRy b2y +3b%y+3 dx (27¢)

T Zy(bZy+1)  dt
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Adding eqns. (26c) and (27c), setting Z,=R, we find an equation of which
the real part represents the moment of the frictional forces corresponding
to a cylinder with the height equal to the diameter, according to Fig. 3a.

bR 4-3bR 43 du

= — 3 By
C = C,+C, = 5aR%y BRIl ¥ (28)
From eqn. (14a) we can get the real part of eqn. (28):
Re(C) = 5nR3n(2+Rb, +P) %‘;i (29)
with
_ b R+1 1/ 7
P= (b;R+1)24b,2R% ° b= ‘/TIT

Second case: a—» 0.
By departing from the same eqns. (26b) and (27b) but using eqns. (18b)
and (24) to find respectively (dw/dr); and (dw/dz)z, we obtain:

2  Kery(boR) +i-keig(boR) ] d
C' = 4nR3 = b edmils 0 0 _—
v =dn Z“”[R boe™ ker (boR) 41 -ker,(b,R) _| dt (30)
da
' — RS
C,' = nR%n aG (31)

Adding eqns. (30) and (31) and setting Z,=R we find a relation in the real
part which represents the moment of the frictional forces according to Fig. 3b

kery(boR) +-i -keig(byR) | e
ker (byR) +1-kei (b R) | dt
To find the real part of this equation we will transform the last factor using
numerical values for Kelvin functions tabulated from MacLachlan,® according
bo: kery(Z) +i-kein(Z) = Ny(Z) expligy(Z)] (33)
where N,(Z) and ¢,(Z) are tabulated. We can then write:

C' =0,/ 40, = 4aRy [% + _1% — byednils (32)

b 2
Re(C’) = 4nR* (—": + =
A VVOR
NoboR) o do
—by N,(bR) co8(37 +do(boR) — 1 (byR)) at (34)
Motion of the cylinder. The movement of an oscillating body hanging freely
in a torsional wire is given by the wellknown differential equation:

d2x

where
o = angular displacement
t = time
I = moment of inertia of the cylinder

M = torsional constant of the wire
C = the sum of the moment of frictional forces on the cylinder surface.
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We have seen, in the previous section, that we can write C in the form:

C = L(d«/dt) (36)
L being independent of ¢. Eqn. (35) can then be rewritten:
d o do
dt2 +L -}—Moc =0 (37)

By introducing eqn. (9), expressing L as a complex quantity, and introducing
the time of swing in vacuum L
Ty =2x VIM

it is possible to relate the real part of L to measurable quantities:

15T 4
Re(l) =7 (Tz TE “) | (38)

In our system, we can write with an error less than 0.01 9
T=T,

and we can neglect ¢ when compared to 4n?% with an error less than 0.004 %,
We hence get:

Re(L) = -2 (39)

Viscosity equation for the cylinder. We have previously expressed the
moment of frictional forces in terms of the viscosity and measurable quantities
and by combining these equations with eqns. (39) and (36) we are now able
to relate the viscosity to measurable quantities for the two models of liquid
pictures of the liquid motion, concerning a

motion.
cylinder the length of which is equal to the
diameter: a) Eqn. (35); b) Eqn. (36). (a) (b)

CE

Cylinder
|
l

Fig. 3. Illustration of the two idealized

Model a): Motion as depicted on Fig. 3a. The shells and discs are supposed
to be rigid performing harmonic oscillations. By combination of eqns. (39),
(36) and (29) is obtained
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Fig. 4. Diagram of oscillating pendulum and furnace assembly.
A: Handle for start oscillations; B: Tungsten torsion wire; C: Mirror; D: Brass rod; E: Ni
ring; F: Ni disk; G: Pt-10 9% Ir rod; H: Pt—10 9% Ir sphere.

Acta Chem. Scand. 24 (1970) No. 2



HIGH-TEMPERATURE VISCOSITIES 521

IS 1
"= 5aRT, 2+Rb, +P
p___ bRl _ |

® R+1)2+b12R2 (40)
b, = W_

It may be noted that eqn. (40) for this cylinder is actually the same as eqn.
(2) for the sphere except for the factor 2/5 which for the sphere is 3/4.

Model b). Motions as depicted on Fig. 3b. The shells and rings are supposed
to be rigid, performing harmonic oscillations but motion in the liquid not
being perpendicular on the cylinder surface is excluded. By combination of
eqns. (39), (36) and (34) is obtained:

s 1
"=Tp 4
A—dnre [ Do 1 2y NoboB) ot g bR)—,(BoR))
‘ el R "N(bR) ¢ ° 1(bo

by =V 2mp[nT

It should again be noted that the J to be used in eqn. (41) is due to viscous
damping on the cylinder only. The J obtained from experiments must hence
be corrected for damping due to friction on the other parts of the pendulum.

(41)

EXPERIMENTAL

Apparatus. In Fig. 4 a sketch is given of the apparatus constructed for our experi-
mental work. The oscillating part is shown separately to the left.

A polished Pt-10 9, Ir sphere (H) or cylinder was attached to a 1.5 mm diameter
rod (G) of the same material. The diameter of the sphere and cylinder was 20 mm, the
height of the cylinder was approximately 20 mm. The platinum rod was screwed tightly
into a 6 mm diameter brass rod (D) making a rigid pendulum which was then joined to
a tungsten torsion wire (B). A plane mirror (C) mounted near the top of the brass-rod
was used for measuring the movement. A disk of pure Ni (F) was attached to the brass-
rod. An extra Ni ring (E) can be taken on and off when it is required to determine the
moment, of inertia of the system. The oscillations were initiated by slightly turning the
handle (A) at the extreme top of the apparatus. The tungsten wire was surrounded by
a thermostated, double-walled mantle (2) made of pyrex glass. During measurements
the temperature was maintained at 2540.1°C by circulating water through the mantle
(3) from an ordinary thermostatically controlled water bath. The mirror on the pendulum
was aligned with a glass window (4) so that the oscillations of the pendulum ¢ould be made
visible by means of a light beam. This beam came in from the left, passed through the

1: Outlet inert gas; 2: Thermostated mantle; 3: In- and outlet of thermostated water; 4:

Glass window; 5: Screws for adjustment of upper radiation shield; 6: Flange for connec-

tion to vacuum line; 7: Upper radiation shields; 8: Water-cooled furnace jacket; 9: Diato-

maceous earth for insulation; 10: Kanthal hea.ting wire; 11: Pythagoras tube; 12: Pt-10 9,

Rh thermocouple; 13: Pt crucible; 14: Supporter; 15: Lower radiation shields; 16: Con-
tainer; 17: Inlet inert gas; 18: Glass system; 19: Valve; 20: Piston.
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window and was reflected by the mirror on a scale mounted about 1.5 m to the left of
the apparatus. A deflection of 0.04° corresponded to 1 mm on this scale. Calculations have
shown that the error due to refraction of the light beam in the window was negligible.

The crucible (13) used was a Pt-crucible of 45 mm I.D. and height 80 mm.

A standard type furnace as described by Motzfeldt *° was used. It consisted of a central
Pythagoras-tube (11) with a heating element (10) of resistance wire (Kanthal A). The
element was thermally insulated by diatomaceous earth (9) and enclosed by a water-
cooled jacket (8).

The heating element was made by winding resistance wire around the central tube
from the base to the top and then reversing the process so that the downward windings
lie in between the upward windings. This was done to eliminate magnetic fields inside
the furnace which could give rise to disturbances in the melt due to convection or damp-
ing resulting from eddy currents in the platinum pendulum. The temperature was
regulated and kept constant by connecting a Variac to a voltage-stabilizer. The tempera-
ture distribution was adjusted by shunting parts of the windings. A temperature varia-
tion of less than +0.5°C was obtained within the crucible over the time of one viscosity
experiment. No disturbance due to convection flows in the melt was observed below
950°C. The temperature was measured by a potentiometer and a Pt/Pt-10 % Rh thermo-
couple (12) which dipped into the melt.

The upper part of the apparatus together with the thermostated glass mantle which
included the glass window was stationary, and was mounted on a rigid rack, while the
rest of the apparatus was mounted on a trolley and was able to slide up and down. The
upper radiation shields (7) were fixed to the upper stationary part of the apparatus by
three screws (5). These screws made it possible to slightly adjust the position of the radia-
tion shields to secure free pendulum swing.

The supporter (14) together with radiation shields (15) could be moved relative to
the furnace tube so that the position of the crucible could be adjusted. In addition to
this the supporter bearing crucible could be lowered by means of a piston (20) below the
point where it was possible to fill it by means of the glass system (18). This system allowed
the container (16) to be filled with hygroscopic salt in a dry box and, after closing the valve
(19), to transfer it and mount it on the furnace. Before opening the valve the furnace
was evacuated. After passing dry nitrogen through the furnace we could transfer the
salt from the container to the crucible. The same system was afterwards used to add
non-hydroscopic salts.

The whole apparatus was made vacuumtight by rubberseals on all the flanges. Con-
nection to the vacuum system was made by an upper flange (6). With this system we
could obtain a vacuum down to 3 X 10~* torr.

Preparation of pure salts. In our experiments we used NaCl and KCl p.a. from Merck,
Darmstadt (Germany) and MgCl, p.a. from J.T. Baker.

Both NaCl and KCl were dried under a primary vacuum (1072 torr) at a temperature
of 500 to 600°C. The salts were then melted under a stream of nitrogen and were then
allowed to crystallize as the temperature was slowly lowered. Unclear crystals were
discarded. MgCl; was prepared very carefully by treatment with HCl. We used a
method which we have previously described.’! This was a combination of the methods
already used by Laitinen et al.'* for LiCl and by Schrier® for MgCl,. Analysis by
polarographic measurements 1* did not reveal any detectable amount of water.

Calibration of the apparatus. Eqns. (2), (40) and (41) give the viscosity from the
measurement of the damping of a torsional pendulum and the periods of swing in the
melt and in the gas. We also need to know the density of the melt as well as the fol-
lowing parameters effecting the system: moment of inertia, radius of the body and
damping correction.

The period of a harmonic pendulum in a gas is given by the relation:

T, = 22V I, /M (42)
with I, moment of inertia and M torsional constant of the wire. I, cannot be found directly
by measurement of the period because we do not know M. But by adding and taking
away a mass with known moment of inertia it can be computed, using relation (43).

I, = AI T&/(T@—T? 43)
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where T, and 7T’ are the time of swing with and without the extra mass, respectively,
A4I 1s the moment of inertia of the extra mass. This determination is quite critical for the
accuracy of the viscosity measurements. Calculation shows that a variation of 0.02 9,
in the period will introduce an error close to 0.15 % in the moment of inertia.
The period was extremely sensitive to the handling of the oscillating system. To
decrease the effect due to changes in the torsional constant of the wire, it was
pretreated at 1200°C in an atmosphere !* of dry hydrogen. It was also found necessary
to allow time for the stabilization of the wire following the removal or addition
of the extra mass (E). This is shown in Table 1. The wire had a diameter of 0.2 mm

Table 1. Change in periods by taking off and adding the extra mass.

Extra mass Extra mass Extra mass
added taken off added again
Period 5.103 4-0.001 3.627 5.112
} one week { two days
in seconds 3.643 4+0.001 5.103 4-0.001

and all measurements were carried out at 25°C. Trials with thinner wires showed unsta-
bility with respect to torsional constant. The added mass had a moment of inertia of
AI=92.05 g-cm?. The sphere and the cylinder had radii of 1.053 and 1.015 cm, giving
a moment of inertia at 25°C of 46.7 and 71.8 g-cm?, respectively.

For measurements at elevated temperatures it was necessary to make corrections
for the expansion of the sphere or cylinder. The average linear coefficient of expansion
between 0 and 1000°C for platinum is 9 X 107%,% and since the moment of inertia is pro-
portional to the square of the radius, we obtain for the sphere:

I, = 141.45+446.70(1+2(t— 25) X 9 X 10~%)
and for the cylinder:
I, = 141.45+71.80(1+2(t— 25) X 9 x 10~%)

To determine the viscosity we have to consider the damping of the body (sphere
or cylinder) due to the viscous drag in the melt. We measure the damping J, of the whole
system, and have to correct this value by subtracting the damping for the system
outside the crucible. This correction is given by the expression:

0s— 0, (44)

where J,=observed damping of the system in nitrogen atmosphere, and J,=calculated
damping of the oscillating body only, in nitrogen atmosphere. This expression is expected
to be approximately constant since most of the damping will occur in the tungsten wire
and on the brass system which are held at constant temperature. Strictly, a correction
for the part of the platinum rod submerged in the liquid should be performed, but calcula-
tion showed this effect to be negligible.

Observed readings of the amplitude were plotted as ordinate against the number of
oscillations as abcissa, noting that the successive readings on each side are phase-
shifted by half a wavelength. One then obtains two symmetric exponential curves and
finds graphically the zero line midway between the curves. Corrected amplitudes are
now obtained as the distance from the zero line to one of the exponential curves. In a
new graph the logarithm of this corrected amplitude is plotted versus number of oscilla-
tions, and straight lines were obtained indicating damped, simple harmonic motions.
A check of simple harmonic motion is that the time of swing was independent of the
amplitude.

From the slope of the straight line we find the damping constant § according to the
equation:

0= (n ay—In «, )k (45)
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o, and o, are the respective amplitudes at oscillation number n and n4k.
The obtained correction term is given in Table 2. This correction can be used inde-
pendent of the temperature in the furnace.

93— 03 = 0.00325 -+ 0.00006

Computation of the viscosity. For measurements with the sphere, the viscosities were
calculated by an electronic computer using an iteration procedure according to eqn. (2).

Table 2. Correction for the damping (d;— ;).

Temperature, 03X 10° g3 x 10% -
°C m;asured cor;xputed (95— 05) X 107
25 3.33 0.10 3.23
410 3.35 0.16 3.190 305
700 3.49 0.19 3.30
850 3.49 0.21 3.28

The starting guess of the viscosity is not critical and 0.01 poise has been used for all
calculations. ‘

For measurements with the cylinder, viscosities were calculated manually by two
iterations and a graphical extrapolation, both according to eqn. (40) and to eqn. (41)
and using tabulated Bessel functions in McLachlan.®

RESULTS

Viscosity measurements in water and KNO,. In Table 3, we give results
that were obtained (with the sphere) in water and KNO,, so that a check could
be made on our apparatus. Three measurements were made at each tem-
perature. The scattering of our results was less than 1 9%,. For water we used
the density data given in Landolt-Bornstein’s tables.’® For KNO,; we used
the following relation

d; = 2.144—(0.80 X 103)¢

Table 3. Viscosity in water and KNO;. Corresponding reference according to Landolt-
Bornstein ¢ for H;O and Kleinschmidt * for KNO,.

T D . Viscosity, cP
Compound empgrature, a,mg)mg,
This work Literature data

15.9 0.01477 1.118 1.114

H,0 18.1 0.01427 1.064 1.068
19.0 0.01401 1.036 1.030

20.9 0.01357 0.986 0.983

342 0.03240 2.700 2.720

KNO, 382 0.02726 2.255 2.257
398 0.02876 B 2.070 2.085
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in the temperature range of 336—400°C, as given by Brillant.??

The value for water was actually found to be systematically 2 9, lower
than the literature value. This is believed to be due to difficulties in determina-
tion of the radius of the sphere (see below) and a correction factor according
to this deviation was used for all experiments. By this calibration good agree-
ment with the carefully determined viscosity of KNO,2° was found (Table 3).

Uncertainty of the measurements. A complete statistical analysis of error
was difficult to obtain from the somewhat complicated expression of eqn. (2)
for the sphere. But Table 4 gives the estimated standard deviation of the dif-

Table 4. Estimated uncertainties of measured quantities and corresponding uncertainties
for the viscosity.

. Uncertainty, Change of value
Variables % v for viscosity, %
Damping, § 0.5 0.75
Time of swing in nitrogen, T, 0.04 0.02
Time of swing in liquid, 7' 0.04 —0.06
Density, ¢ 0.3 —0.16
Moment of inertia, I 0.15 0.25
Radius of sphere, R 0.2 —1.0

ferent variables and the resulting changes in viscosity which were calculated
from the computer program. The largest uncertainty is introduced in the
measurement of the dimensions of the sphere. This is a systematic error and
was taken care of as mentioned by a calibration factor. From the scattering
and experimental uncertainties we estimated our overall standard deviation
to be within 2 9%,.

Viscosity measurements in pure NaCl, KCl and MgCl,. In Table 5 the results
that were obtained for the pure molten salts are listed. In this temperature
range our results show a scatter of about 1 %,. In the case of NaCl which has
not been cleaned and dried, the results are about 2 9, higher than that of
anhydrous NaCl. For the density of both NaCl and KCl, we used the data
from Van Artsdalen and Yaffe.l® For MgCl, we used the relation given by
Grjotheim et al.'®

dy = dgyo+(0.38 X 10-3)¢t

dgoo = 1.664

From these values we can compute the activation energy for the viscosity,
on the assumption that the results can be represented by the well known
empirical relation:

n = A exp(—E.s/RT) (46)

These results are given in Table 6, in kcal/mole and a comparison is made
with literature data. As log #» is not a completely linear function of 1/T' the
calculated activation energy will depend on the temperature range chosen.
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Table 5. Viscosity in molten NaCl, KCl, and MgCl,.

Exp. Temperature, Viscosity,
Compounds No. °C cP

1 812 0.989

NaCl without 2 854 0.896
drying 3 858 0.892
1 884 0.858

1 812 0.977

2 814 0.958

2 838 0.908

NaCl 3 851 0.891
2 856 0.857

3 870 0.857

4 885 0.840

5 902 0.809

1 807 0.960

KCl 1 832 0.910
2 861 0.849

3 863 0.845

1 722 2.127

2 741 2.015

MgCl, 2 786 1.856
'3 803 1.759

3 845 1.642

Table 6. Activation energy for the viscosity in pure salts. Literature values according
to Murgulescu and Zuca 3»* and Bondarenko.”

Temperature E ;. kcal/mole E ;o keal/mole
C ds o visc. visc,
ompoun range, °C This work Literature data
NaCl 810—900 4.95 -
810—970 - 8.69
KCl 810—870 5.52 -
780—930 — 6.52 =
MgCl, 730— 840 4.76 —
730—870 — 5.60 %

Viscosity measurement with cylinder. Viscosities for experiments with the
cylinder are summarized in Table 7. The viscosities were calculated from the
two different approximations given in the theory and compared with experi-
mental results for the oscillating sphere.
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Table 7. Values of viscosities obtained with the oscillating cylinder using eqns. (40) and
(41), compared with extrapolated values obtained with the oscillating sphere.

Viscosity, cP
Compounds Tempgrature, :
with eqn. (41) with eqn. (2) with eqn. (40)
H,0 20.8 1.070 0.995 0.891
KCl1 832 0.988 0.906 0.831
DISCUSSION

The successive improvements in our apparatus have enabled us to reduce
the scattering of our results to within 1 9. The results obtained for KNO,
are in good agreement (<1 9,) with those reported in the literature,?® so that
we can conclude that a satisfactory check of our apparatus has been made.

1.60 — : r

—
150+ o, N
+
140F v J
1.30 v - 1.3
% r a 0% 0 ' + L i
> 1.20 |- . ° — 120 - . ~
» ‘ o ‘p
g 1o . s . 9 1o b A =
= +
Z 100 . 2 100f ¢ .t .
2 ..
0.90 |- . & 090} . -
> -
0.80 |- o 0.80 - ° E
1 1 ] 1 1 1 1
800 850 900 950 750 800 850 900 950

Temperature °C Temperature °C

Fig. 4. Viscosity of molten NaCl. Symbols
used: -+ Berenblit;?2 O Dantuma;? AY
Murgulescu and Zuca;* [] Bondarenko;*
® This work; @ Undried salt, this work.

Fig. 6. Viscosity of molten KCl. Symbols
used: -+ Berenblit;?® A Murgulescu and
Zuca;® [] Bondarenko;*” @ This work.

The obtained viscosity for NaCl was compared with earlier investigations
in Fig. 5. A severe disagreement with earlier investigations was observed both
in the actual values and the temperature variation of the viscosity. This
discrepancies made us repeat the experiments several times but consistent
values were found and the reported values resulted from 7 independent
experiments with new loadings of the crucible. The disagreement might pos-
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Fig. 7. Viscosity of molten MgCl,. Symbols used: @ This work; O Bondarenko;*” +
Berenblit.22

sibly have been caused by the earlier workers having the same instability
we observed before using an appropriate torsion wire. For instance, Murgulescu
and Zuca’s % results for water and aniline disagree with 15 and 44 9, respec-
tively, relative to values given in Landolt-Bornstein’s tables,'®¢ Bondarenko’s
results 26 showed a 10 9, scattering.

For KCI (Fig. 6) the variation of viscosity agrees well with previous measure-
ments of Murgulescu and Zuca %2 and Bondarenko 27 but our values are

consistently about 15 9%, lower.
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For MgCl, (Fig. 7) our results agree well with the recent work of Bonda-
renko ?? while an earlier investigation by Berenblit 22 gives much higher
values.

In Table 7 it is seen that the experimental results for the sphere is about
midway between results calculated for cylinder by the two approximations.
Referring to Fig. 3, this is what one will expect by physical reasoning. Eqn.
(41) takes only consideration to layers projected from the horizontal and
vertical sides of the cylinder. But obviously viscous friction will occur in the
two rings outside the edges shown as quadrants on the projection on Fig. 2a.
Because of neglection of this friction the calculated viscosity will be higher
than the real viscosity as shown in Table 4. Using eqn. (40) the viscous drag
of layers is larger than in reality, since the layers in the two rings will not move
as fast as layers in the same distance which are directly outside the projec-
tion of the cylinder. As seen from Table 7 the real physical picture is between
the two values, being approximately the mean value of the two approxima-
tions. The difference between the two values are approximately 17 9, in
both cases.

In conclusion it should be pointed out that if the sphere can be utilized
it has advantages over the cylinder because it is subject to an easier and a
more exact mathematical treatment. Our approximate solutions for the
cylinder are, however, so close to the real picture that they can be applied
with confidence, introducing an additional coefficient determined by calibra-
tion.
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