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Kinetic Characteristics of the Sequential Random Order

Two-substrate Enzyme Mechanism
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The steady-state rate behaviour of random order two-substrate
enzyme systems has been investigated and classified with respect
to curve shapes obtained in Lineweaver-Burk plots. Relationships
between curve shapes, rate constants, and substrate concentrations
are examined, and it is shown that exhibition of linear reciprocal
rate plots cannot be generally related to whether the mechanism is
effectively ordered or not. Linear relationships are always obtained
asymptotically at comparatively low substrate concentrations, and
a general rate equation is derived for this asymptote case which,
in fact, includes all cases of linear reciprocal rate behaviour inherent
in the random order two-substrate mechanism.

Most enzymes catalyze bimolecular reactions.! For the corresponding two-
substrate enzymatic reactions there are two general types of mechanism,
the ping-pong mechanism where a product is released before both substrates
have reacted with the enzyme, and the ternary complex (sequential) mechanism
where the enzyme combines with both substrates before any products are
formed.2,3

A main problem in the study of enzymes operating by sequential mecha-
nisms has been to determine whether substrates add in compulsory or in
random order to the enzyme. Using the notations of Dalziel * a random
mechanism can be written as
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In a compulsory order mechanism ternary complexes are formed exclusively
by one of the alternate pathways indicated in scheme (1).

Steady-state initial rate data are most commonly analyzed by means of
reciprocal rate plots (Lineweaver-Burk plots).> Compulsory order mechanisms
give rate equations of the usual hyperbolic (Briggs-Haldane ¢) type, and reci-
procal plots are linear.® In the random order mechanism the steady-state
reaction velocity is a more complex function of substrate concentrations.
Dalziel has pointed out that both cases of substrate activation and inhibition
are inherent in this mechanism which, in general, must be assumed to yield
non-linear reciprocal rate plots (see eqn. (9) below).* It has, in fact, often been
stated in the literature that random order mechanisms (with exception for the
rapid equilibrium case 4) always yield non-linear Lineweaver-Burk plots, and
a large number of two-substrate enzyme systems have been claimed to operate
by a compulsory order or a rapid equilibrium mechanism merely because they
obey a Briggs-Haldane type of rate equation.2,”

The purpose of the present investigation is to determine the general
kinetic characteristics of the random order mechanism (1) as they are mani-
fested in Lineweaver-Burk plots, and particularly to define conditions under
which linear relationships are obtained.

CHARACTERIZATION OF RECIPROCAL PLOTS FOR THE RANDOM ORDER
MECHANISM

The reaction in mechanism (1) will only be considered in the forward di-
rection, rate expressions for the reverse reaction being obtained by insertion
or deletion of primes on rate constants and reactants. The steady-state rate
equation (in absence of products) for mechanism (1) with respect to the first
substrate S, is given by 4

.})__ — a2[81]2 +“1[S]] (2)
1% BaofS1 PP+ B[811+Bo
where v stands for the steady-state reaction velocity and cg for the total
concentration of enzyme. The coefficients «; and g; are functions of the con-
centration of the second substrate S,

ay = ag[S,] (3)

ay = g[Sy +ayy[S,] (4)
B: = PBarlSal+ B0 (5)

B1 = B1alSel? +B11[Se] + Bro (6)
Bo = ﬂoz[Sz]z‘*‘ﬂm[Sz] + Boo (7)

The coefficients «; and f;; are all positive and can be expressed in terms of
rate constants in mechanism (1) as shown in Table 1. Thermodynamically,
rate constants must satisfy the condition:

kik_gksk_y = k_ykok_gk, (8)
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Table 1.
Xg1 — k1k3k4
we = koksk,
ayy = kik_oky+ k_ 1Kok,
Bay = kiksk(A+B)
Boo = k1k4(1 +k_sA)
B = klkaka(A +B)
Bn = Jeakey+ (ko oke_ghes+ K 1k2k4)(A +B)+(k 1k3k—4 + kzk—xk4}A
ﬁlo = k—lkq( 1+ k-aA) +k 1k_2( 14k A+ k_gA)
Por = kky(1+k_,A4)
ﬂ(u = k_ lkz(l +k_sA +k—4A) + k—zka(l + k—4A)
Boo = k_ _o(14+k_sA+ k-cA)
A = (K_3+ k’—4 + k/)/k(k,—a+ k,—d)
B = (K kgt okt b k) KKy (K st E )

Eqn. (2) can be recast in the reciprocal form

?1'3 = BZ +ﬂisl]-1 +ﬂ0[sl]_2 (9)
v ag 4oy [S,]7
and it can be seen that cg/v in general is a non-linear function of 1/[S,]. In

order to study the shape of the curves described by eqn. (9) we introduce
the notations y=cy/v and x=1/[S,;], when eqn. (9) transforms into

R ﬂ2+ﬂlx+ﬂ(}£2
yl) = i (10)
which may be written as
_ b b | Po "
ylx) = a T Tl + 2 x+F(x) (11)
where
y = Pt fy—aiaafy
Flw) = ay?(otg +y) B (12)
or
Fa) = 2F0 (13)

Xy 0t X

F(x) obviously approaches zero as x approaches infinity, and hence it follows
from eqn. (11) that y(x) has a linear asymptote given by

B_l _ ?‘E_ﬁé‘) + & x (14)

*y %1 %

Yas(x) =

F(x) represents the difference between y(x) and its linear asymptote, and is
thus closely related to the curvature of the function y(x); it may be observed
that differentiation of eqn. (11) with respect to x yields

@) =By ey = fo . 2lO) (15)

xy 31 (2 +oy2)?
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2a, %, F'(0)
(g +-aq2)3 (19)
Examination of eqns. (11)—(13) shows that y(x) steadily approaches its
linear asymptote without intersecting it, and the reciprocal plots described
by eqn. (10) may be classified in three main groups with respect to the sign
of F(0). When F(0)<<0 the curves are concave down (eqn. (16)) and approach
the asymptote from below (type I). When F(0)=0 we have F(x)=0 according
to eqn. (13), and y(z) becomes identical with its linear asymptote (type II).
When F(0) >0, finally, the curves are concave up and approach the asymptote
from above, and for such type III curves we may distinguish between two
cases depending on whether %'(0)>0 (IIla) or y'(0)<<0 (IIIb). In the latter
case y'(r) must become zero at some positive value of « as the asymptotic
value of y'(x) is positive (eqn. (15)), and y(x) exhibits a minimum point.
Defining M as

y'(@) = F'(x) =

M = !3? — gl (17)
X2 !
it follows from eqn. (12) that
F(0) = M + “:@ (18)
1

and eqn. (15) becomes
oty fo® 4209 foxr —aye M
(g +o,2)?

y'(x) =

1.0

y /Q
05
By/axq
Yas(0)
n 4 .l 1
110 50 100 x
x 1 01 0.02 0.01[S4]

Fig. 1. Classification of reciprocal rate Fig. 2. Solid curves show reciprocal rate
curves with respect to the magnitude of plots for a hypothetical enzyme obtained
¥(0) in relation to y,4(0) and B,/u;. by putting all rate constants in mechanism

(1) equal to wunity with exception for

k,=k,=103. Rate constants and substrate

concentrations have not been given any

dimensions, but any consistent set of

dimensions will be acceptable. The dashed

curve shows the variation of the flow

ratio @ with [S,] at [S,]=0.01.
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Hence it follows that M >0 is a necessary and sufficient condition for type -
ITIb-kinetics, the minimum value of y(x) being obtained for

e =Y LB nb % (20)

Typical shapes of the different curve types are indicated in Fig. 1. A type
IIIb curve is also shown in Fig. 2.

RELATIONSHIPS BETWEEN CURVE SHAPES AND RATE CONSTANTS
Evaluation of M and F(0) using eqns. (3)—(7) gives
My +m4[S,]

M = 21
a1[S] (011 +a10[S,]) 1)
Jo +/1[S:] +/a[Se
F0) = _ 22
© o‘21[82](‘7‘11 +oy5[S,])? (22)
where
my = ay1Ba9—%1S10
my = ayqfar+ai2Ba0— %111
f:o = %g1%Poo T11"Mg
1 = %Py g my oy
s = tpq®fog taygmy

Using eqn. (8) and the expressions and notations given in Table 1 one obtains
my = kik_ik? (ky—ky—ksk_gA) (23
my = kykgky (ky(ky—ky)—kyksk_oA) (
Jo = kik_sksk® (k_iky(ky—ks) +kqk_gks) v (
Jo = kikoks*kg® (ky(ky—ks) +k,ks) (26
f1 = ke folks+ksfolk_y (
Factorisation of eqn. (22) using (27) yields
(Fe[So] +ho_y) (k-1 fo[Se] k3 fo)
©) k- kgogy [Sa(etyy +10[Sp])? (28)
and for classification of curves we have
sign (M) = sign (mg—+m,[S,]) (29)
sign (F(0)) = sign (k_1f5[S;]+ksfo) (30)

Only the following relationships between curve shapes and rate constants
are obvious and general:
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a. Exhibition of type I kinetics (¥(0)<C0) implies that k,>k,; it follows from
eqns. (25), (26), and (30) that f,, f,, and ¥(0) are positive when k,;<k,.

b. Exhibition of type IIIb kinetics (M >0) implies that k,< k,; it follows from
eqns. (23), (24), and (29) that my, m,, and M are negative when k,>k,.

RELATIONSHIPS BETWEEN CURVE SHAPES AND THE CONCENTRATION
OF THE SECOND SUBSTRATE

It follows from eqns. (29) and (30) that the signs of M and F(0) may vary
with [S,], which means that different types of reciprocal plots with respect
to one substrate may be obtained on variation of the concentration of the
second substrate. The conditions leading to such transformations of the curve
type are listed in Table 2. These conditions, being given in terms of the signs
of my, m4, fy, and f,, can readily be evaluated in terms of relationships between
rate constants using eqns. (23)—(26). It may be noted that linear type II
kinetics are obtained at one specific concentration of S,, only, the concentra-
tion for which transformation between type I and IIIa kinetics takes place.

Table 2. Dependence of curve shapes on the concentration of the second substrate.
Transformations between type ITIa and IIIb kinetics take place for [S;]= —my/m,, and
between type I and Illa kinetics for [S;]= —kyfo/k_,fs.

Sign of Change of curve type
my my  fo S as [S,] increases
+ + + + IIIb (no change)
=+ — + + IIIb - IIla
- + + + IITa - IIIb
- - + + IITa (no change)
- - + - IMTa - II > 1
- - — + I > II - IITa
- — - — I (no change)

The results listed in Table 2 are of great theoretical interest, since they
demonstrate the complex kinetic behaviour which may be shown by enzyme
systems operating by the random order mechanism (1). Not only are cases
of apparent substrate activation and substrate inhibition inherent in rate
eqn. (2), but also cases where the kinetic behaviour changes between apparent
substrate activation and inhibition when the concentration of the second
substrate is varied.

Examination of eqns. (12) and (28) shows that F(x) approaches zero for
large values of [S,] as well as of x. Non-linearity in reciprocal plots with
respect to one substrate will, therefore, in general be most easily demonstrated
using high concentrations of this substrate (x small) and low concentrations
of the second substrate. Reciprocal plots will always tend to be linear when
the second substrate is present in “‘saturating’ amounts. This can be illustrated
by example of the “model enzyme” described in Fig. 2, which gives significantly
curved reciprocal plots with respect to S; when [S,] equals 0.01, but apparently
linear plots when [S,] is increased to 0.1.
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RELATIONSHIPS BETWEEN CURVE SHAPES AND UTILIZATION OF
ALTERNATE PATHWAYS

The quotient ¢ between the reaction flow via ES; and the flow via ES,
in mechanism (1) is given by

ky[E][S,]—k_,[ES,]

= 31
¢ = REISI kLB, (&)
whence for the steady-state solution 7,8
Q = k1k3(k"%j_ﬁ[s_1]_) (32)

kegky(—y +k3[S,])

It can be seen that ¢ approaches zero for large values of [S,], and the exhibi-
tion of linear reciprocal plots with respect to S, at high concentrations of S,
appears to be a consequence of the fact that the mechanism becomes effectively
ordered, reaction taking place almost exclusively by the pathway involv-
ing ES,.

gSuch a correspondence between linear reciprocal plots and a preferred
pathway is, however, not general. As was shown above, linear type II kinetics
are obtained for [S,]=—k,fo/k_,f,. Substituting this into eqn. (32) and
rearranging using eqns. (25) and (26) we get

0 = s HhISDkk—ky) +ink)
kokoy(ke_y—k_s)

Since no restrictions have been imposed on the rate constants in the type II
case, ¢ may attain any value including unity. This means that linear reciprocal
rate equations may be obtained also when both pathways to the ternary
complex ES,S, are equally favoured.

Similar results are obtained on examination of the asymptotically linear
part of reciprocal plots and can, for instance, be illustrated by the above
model enzyme. The dashed curve in Fig. 2 shows the variation of 1/Q with
x for [S,]=0.01. It can be seen that the reaction is perfectly random (Q=1)
under conditions giving rise to the linear part of the y(x)-curve, while the re-
action becomes effectively ordered (1/Q=0) at high concentrations of §,,
where deviations from the linear kinetics characteristic of an ordered mecha-
nism are as largest. The conclusion must be that there are no general rela-
tionships between curve shapes and the flow ratio  in a random order mech-
anism.

REDUCTION OF THE GENERAL RATE EQUATION AT COMPARATIVELY LOW
SUBSTRATE CONCENTRATIONS

The possibility of detecting curvature in reciprocal rate plots is dependent
upon the experimental precision; initial rate determinations are often subjected
to a very pronounced statistical variation. Since the difference F(x) between
y(x) and its linear asymptote decreases with increasing values of x = 1/[S,],
there will always be a limiting value of [S,] below which curvature cannot be

Acta Chem. Scand. 23 (1969) No. 8



2724 GOSTA PETTERSSON

experimentally detected. At such “comparatively low” substrate concentra-
tions y(x) will become indistinguishable from its linear asymptote y.s(x) as
given by eqn. (14).

Due to the symmetry of mechanism (1) y as a function of 1/[S,] should
similarly become linear at comparatively low concentrations of S,. This can
be demonstrated by examination of y.s(x). The coefficient fy/a, can be ex-
pressed as a function of z=1/[S,] using eqns. (4) and (7):

Bo _ Boa+Bor +Boo?® (33)
£31 ®yp %1% ‘

Eqn. (33) is exactly analogous to eqn. (10), and it follows that fy/x, approaches
a linear asymptote for large values of z. Comparison with eqn. (14) shows that

(ﬁo) _ B Ezaﬁzo,_o 4 P, (34)
%31/as %11 %11 %11

It can, similarly, be shown that y.,(0) becomes an asymptotically linear
function of z when z is large, and for comparatively low concentrations of
both of the substrates (x and z large) eqn. (10) reduces to a Dalziel ¢ type of
rate equation:

Y(@2) = ¢ +85¢+ g2+ 1,02 (35)
where (¢f. eqn. (34))
$12 = Poo/*11 (36)
$1 = (Bn—10$12)/%11 (37)
$2 = (Pro—2%a1b12)/%11 (38)
do = (Bri—o11b1—%108s) 01 (39)

Conditions justifying application of the above ‘“low concentration assumption”
used for reduction of the general reciprocal rate eqn. (10) to the linear forms
(14) and (35)—(39) cannot be stated explicitly in terms of rate constants,
as the actual experimental precision will determine whether curvature can
be detected or not.

DISCUSSION

As was mentioned above, it has often been uncritically assumed that
reciprocal rate plots for the random order mechanism always are non-linear
when the rapid equilibrium assumption cannot be applied. More critical
authors 8% have emphasized that linear relationships may be inherent in
rate eqn. (10), but Reiner 8 stated that eqn. (10) will be linear only by an
outside chance (type II kinetics), and that it will almost always be possible
to discriminate between the ordered case and the random case. Wratten and
Cleland ® reached the same conclusions, and added that appreciable contribu-
tion from both of the alternate pathways to the ternary enzyme-substrate
complex will lead to detectable curvature of reciprocal plots.
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The present investigation has confirmed that a linear reciprocal rate
equation with respect to one substrate only can be obtained at one specific
concentration of the second substrate, but has shown that linearity in reciprocal
rate equations cannot be generally related to the utilization of a preferred
pathway. Furthermore, attention has been drawn to the important fact that
reciprocal rate plots may appear linear (at least asymptotically) also when
the rate equation is non-linear.

Substrate concentrations can, for practical reasons (recording of reaction
rates, solubility, efc.), only be varied over a limited range, e.g. by a factor
of 103. This range must be considered as narrow in view of the wide range of
possible values of rate constants, and initial rate determinations can only
be assumed to give information of a limited part of the reciprocal rate curve.
As illustrated by the model enzyme described in Fig. 2, the experimental
picture obtained will be entirely dependent upon the relative magnitude of
the substrate concentrations tested. The model enzyme shows typical 11Ib-
kinetics in the “normal’ range indicated in Fig. 2, exhibits permanent substrate
inhibition 1 in a high concentration range ([S,]>0.5), and apparently obeys
Briggs-Haldane kinetics when being observed in a low concentration range
([S4]<<0.1).

It might thus well happen that all substrate concentrations within the
range available for experimental variation should be considered as compara-
tively low (particularly when relationships between substrate concentrations
and rate constants are such that the enzyme operates in the proximity of
type II kinetics). Under such conditions the non-linear rate eqn. (10) for a
random order mechanism becomes experimentally indistinguishable from the
bilinear Dalziel eqn. (35), which is known to govern the kinetics of compulsory
order and rapid equilibrium mechanisms,? and it will not be possible to dis-
criminate between the different cases by initial rate studies. The mere exhibi-
tion of linear Lineweaver-Burk plots with respect to both substrates can
certainly not be taken as evidence for elimination of a random order
mechanism.

The ‘“low concentration assumption’ introduced above for derivation
of eqns. (35)—(39) may appear similar to the rapid equilibrium assumption
as stated by Dalziel,* but is less restrictive. Reciprocal plots for the random
mechanism may be apparently linear at much higher concentrations than
required to justify a rapid equilibrium assumption. Eqns. (35)—(39) are,
consequently, more general than the corresponding expressions derived by
equilibrium analysis, and include any bilinear kinetic behaviour inherent
in the random order mechanism.

A complete analysis of the conditions under which a two-substrate enzyme
system operating by a random order mechanism may conform to a Dalziel
type of rate equation has apparently not been presented previously. The
general bilinear relationships (eqns. (35)—(39)) derived in the present in-
vestigation may, therefore, be of great value for studies and discussions of such
enzyme systems.
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