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Crystals of uranyl acetylacetonate obtained on crystallization
show different diffraction diagrams. All of them can, however, be
explained as originating from members of one and the same family
of OD-structures. The OD-groupoid family is either

P2 a (a) P m a (a)
or
{2} nap (ap)} {ea Mg (a3)}
witha = 16.6 A; 6 = 7.1 &; ¢, = 24.4 A.
Approximate uranium coordinates were obtained from qualitative
observations concerning the diffuse streaks. They are:
zy = 0; yy = 0.25; zy = 0.052.

These are in accordance with the predominant maxima of the
Patterson projections P(u,w) and P(u,v) for the monoclinic form.

Uranyl(IV acetylacetonate was first prepared in 1904 by Biltz and Clinch !
by mixing a solution of a uranyl salt with acetylacetone and neutralizing
the resulting solution with alkali or alkali carbonate. This compound has
now been characterized as bis(acetylacetonato)dioxouranium(VI) hydrate
UO0,A,-H,0, acetylacetone being denoted by HA. A similar method has also
been used by other authors.2"8 From X-ray diffraction data for this compound
Comyns et al.® concluded that it appears in several modifications, some of
which are monoclinic and some orthorhombic. In a recent paper,” further
X-ray diffraction data have been given for a monoclinic modification. Since
several acetylacetonate complexes of tetravalent actinides and similar ions
are under investigation at the Department of Inorganic Chemistry, Uni-
versity of Goteborg, a study of the crystal structure of uranyl acetylaceto-
nate was considered to be of great interest.
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EXPERIMENTAL

Preparation. An aqueous solution of uranyl acetate was heated to 40°C and acetyl-
acetone was added until the molar ratio U:HA was 1:4. The resulting solution was stirred
rapidly for about an hour and was then allowed to stand and crystallize. After about
12 h a crystalline precipitate was collected on a filter, washed with cold water, and dried
over silica gel in a desiccator.

Uranyl acetate was preferred to uranyl chloride or uranyl nitrate in the preparation,
since the acetic acid formed during the reaction is a weak acid and does not appreciably
alter the pH of the solution in contrast to HCl or HNO; which would have been formed
had uranyl chloride or uranyl nitrate been used instead.

Analysis. The amount of uranium in the crystals was determined by heating a sample
for about 30 min to approximately 800°C, the residue being weighed as U,0O,. The amount
of acetylacetone in the substance was determined spectrophotometrlcally using a method ®
described by Bonner and Thorne. A sample was dissolved in 0.05 M sulfuric acid and
a solution containing iron(IIT) was added, whereupon the stable red compound FeA;
was formed. The amount of FeA; was determined at 484 nm using a Zeiss PMQII photo-
meter.

The amount of water was determined by drying a sample at 106°C in an oven.

The results obtained are given in Table 1.

Table 1. Results of the chemical analysis.

‘ Cale. for Found

U0,A,H,0
o, UO#+ 56.53 55.43
% C.H,0, (=A) 40.76 41.02
& H,0 371 3.77
Sum 100.00 100.22

X-Ray diffraction data. Single crystals of about 0.015—0.050 mm in thickness were
picked out, and rotation and Weissenberg photographs were taken of different crystals.
Of some crystals extensive intensity data were collected using CuK« radiation and mul-
tiple film techniques. The sizes of these crystals were measured accurately so that a
correction could be applied for absorption. The intensities of the reflections were esti-
mated visually using a scale made from timed exposures of a strong spot in the Weissen-
berg photograph A0L.

CRYSTAL DATA

The crystals investigated seem to belong to Form 1 described by Comyns,
Gatehouse and Wait ® since the lattice constants @ and b for all crystals in-
vestigated agree within the limits of experimental error with those given by
these authors. We have found some crystals which showed monoclinic sym-
metry and a geometry of the unit cell corresponding to form 1B,® and in some
but not all of these crystals the reflections with 2 odd were joined by more

or less continuous streaks parallel to o*. It would thus be more appropriate
to call these ‘“reflections” maxima on the streaks in contrast to the sharp
reflections for & even. These continuous streaks are in disagreement with the
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description given by the authors quoted ® who stated that they observed
streaks for Akl with I odd rather than A odd.

The positions and relative intensities of the sharp reflections with % even
are the same for all crystals, as are the positions and the systematic absences
of the diffuse streaks. The intensity distribution — including the positions
of the maxima — along the diffuse streaks varies, however, from crystal to
crystal; for all crystals investigated the positions of the maxima are such
that they give integral indices referred to the large rectangular unit cell

@b cof the crystals named ® 1A. For most crystals, even those with maxima
which would give integral indices referred to the large rectangular cell but
not to the small monoclinic cell, the intensity distribution of the maxima on
the diffuse streaks shows monoclinic symmetry only. For some crystals, only
the maxima corresponding to a B-face centred cell are present, but for other
crystals this rule of systematic absences does not hold true.

Table 2. Lengths of reciprocal and real vectors characterizing the geometry of uranyl

acetylacetonate.
a* = 0.0929 a=16.6A a= f=1y=90°
b* = 0.218 b= 714
c* = 0.0316 c=48.8 A

NB: Whereas @ and b correspond to translational vectors indicating periodicity,
-
there is no periodicity corresponding to ¢. This is the length of a vector corresponding to

the reciprocal vector ¢* introduced to index the sharp reflections as well as the maxima
on the streaks.

In spite of these variations from crystal to crystal, we may describe the
distribution in reciprocal space for all these crystals with respect to recip-

rocal vectors 71,)*, Z'*, _(:*, corresponding to the large rectangular cell (see
Table 2 and Fig. 1) with intensities differing from zero for places in reciprocal
space characterized by A&, k, & (where h and % are integral and &
may take any real value). The maxima on the streaks occur for integral

values &'={. The lengths of the vectors ;, Z), ¢ in direct space corresponding
to these reciprocal vectors are also given in Table 2. The systematic absences
valid for all crystals are listed in Table 3, together with the conditions for the
maxima for three typical crystals denoted I, II, and III, and with observations
concerning the symmetry of the observed intensities (see Fig. 1).

DETERMINATION OF SYMMETRY

In the following we proceed in a mode similar to that described earlier ®

in greater detail. The streaks parallel to °* show that the structures (at least
of those crystals for which they have been observed) although periodic in the
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Table 3. Summary of the observed distribution of intensity in reciprocal space.

(i) (hk%’) missing for b = 2h with & # 1 (no streaks visible)

(i1) (}:Icl) missing for | = 2n+1 (only values I = 2 i)

(iti) (hki) missing for A1 = 2n-+1

(iv) (RO&’) missing for k = 2n+1 (no streaks for k = 0)

(v) (hkO) missing for A = 2n+1 (intensity of streaks vanishes when

_ &’ approaches 0)
(vi) I(hk§’) = I(hEE’)

(vii) I(hkl) = I(hkd)
In general:
(viii) T(hkl) % I(hkl) for b = 2n--1
(ix) Relative intensities 1 (ﬁlci) the same for different crystals.
(x) Relative intensities I(hk&’) for h odd vary from crystal to crystal.
(xi) Maxima on diffuse streaks are found:
for crystal 1 at h—1 = 4n

for erystal II at h—1 = 4n

and at h+1 = 4n} oratl = 2n+1

for crystal IIT at h+4-1 = 4n
and at 1= 2n

NB: The unit of £’ has been chosen empirically as T:)*, so as to give integral indices for
the sharp reflections and the maxima on the streaks The &-values deduced theoretlcal]y

from the OD-groupoid family refer to a unit cm*=4c* which is reciprocal to cu

@ and D directions are not periodic in the E’direction. The rule of absence (i)
(¢f. Table 3) may be interpreted in terms of a superposition structure with
an electron density g(xyz) related to the real structure (electron density
o(xyz) in the following way:
o(zyz) = H((e(x.y.2) + el + +4.2)) (1)

Rule (ii) in Table 3 means that the superposition structure is periodic

in three dimensions with lattice constants
G=a/2; b=0b; &=c¢/2

and rule (iii) shows that it is B-face centred.

The rules of absence (iv) and (v) indicate the presence of a-glide planes
in the structure, perpendicular to gand-g, respectively. A glide plane perpen-

dicular to E’, which would hold good for the whole structure, would, however,
result in a corresponding symmetry of the intensity distribution which we
found to be violated for many crystals. These a-glide planes must therefore
be at different z-positions, each holding true only for part of the structure.

Whether there exists a total a-glide plane perpendicular to b or whether, even
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Irig. 1. Intensity distribution in reciprocal Fig. 2. Schematic drawing showing the

space. @ = sharp reflections. | = diffuse

streaks present only for k # 0. Maxima

on the diffuse streaks present in crystal

I are denoted by X, in crystal II by
X A, in crystal IIT by A[].

symmetry of a) superposition structure
and b) part of a real disordered structure.
The sequence L,L,L, corresponds to the
sequence in crystal I of Table 2, the
sequence L,L,L, corresponds to the or-

thorhombic MDO-structure described in
the text. ¢=c/2 and ¢,=c/4.

here, there exist partial glide planes, each holding for part of the structure
only, cannot be decided at the present stage. The existence of a total a-glide
plane would lead to monoclinic (or higher) symmetry of all crystals irre-
spective of the disorder or type of crystal; this has actually been observed
in all crystals under investigation up to now.

Owing to the halving of the translation in the @ direction in the super-
position structure, these glide planes (for any of the real structures) result
in corresponding mirror planes in the superposition structure. Thus the
minimum symmetry of the superposition structure is B2mm, which is in keep-
ing with (vi) and (vii) (see Table 3 and Fig. 2); according to (ix), this super-
position structure is the same for the different structures. We may consider

A

the superposition structure to be built up of layers with periods & and b,
each with the plane space group * P2m(m), stacked in such a way as to
produce the B-face centring. To each of these layers corresponds in a real
structure a layer with plane space group P2a(a). For each layer there exist
two positions in keeping with the corresponding layer of the superposition
structure, related by a shift of a/2=d. The crystals giving different intensity
distributions for 4 odd (according to (x)) thus differ in the stacking of their
layers. The lack of orthorhombic symmetry (viii) results from the partial

* For nomenclature of plane space groups see Ref. 9—11 or 12.
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character of the rotation diad parallel to @ and the a-glide perpendicular to c.
Thus a minimum symmetry corresponding to the schematic drawing in Fig. 2b
results.

All pairs of successive layers are geometrically equivalent. These structures
are therefore OD-structures and members of one and the same family of OD-
structures.?1,)2 The common features of their minimum symmetry are de-
scribed by the OD-groupoid family

P 2 a (o)
{25 noy  (a43)}
It would not be possible to detect an additional mirror plane in the single

layer perpendicular to @ and the resulting centre of symmetry be means of
systematic absences or by a change in the symmetry of the intensities. There
is, thus, still another OD-groupoid family in keeping with the observations
listed in Table 3. Its symbol is

P m a (a)
{ea may (4y)}
The volume occupied by a periodically repeating unit of one layer is abc,,

where ¢, is the distance between the a-glide planes (perpendicular to _J) of
consecutive layers (see Fig. 2). As indicated by the density of the crystals,
such a unit contains 4 formula units. The OD-groupoid family (of lower sym-
metry) contains 4 asymmetric units per repeat unit of the layer, whereas
the family of higher symmetry contains 8 asymmetric units per repeat unit.
If every layer Ly.1 of a structure may be obtained from L, by a trans-

lation ?;’m='c’o—7£/4, not only all pairs but also all triples of consecutive layers
are geometrically equivalent (and the same holds for quadruples and higher
n-tuples). Thus such a structure is a structure of maximum degree of order
(MDO-structure, for short).®1,12 It is, of course, a periodic structure with
reflections corresponding to the sharp reflections and the positions marked

by crosses in Fig. 1. A twin to such a structure with translations E’,,,’:Z}Jr&’u
would have reflections at the places marked by triangles instead of those
marked by crosses. An essentially different MDO-structure results if the

translations —c)m and gm’ alternate. This structure is orthorhombic with perio-

dicity 2_0)0. Its reflections correspond to the places marked by squares in Fig. 1,
as well as to the positions of the sharp reflections. Thus, we may conclude
that all the maxima on the diffuse streaks so far observed are due to extended
regions within' the possibly disordered -crystal, corresponding to one or the
other of the MDO-structures described and that the crystals not showing any
diffuse streaks are periodic MDO-structures or consist of extended MDO-
regions.
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FOURIER TRANSFORM FOR THE OD-GROUPOID FAMILY

We shall start by considering the case of lower symmetry with one formula
unit per asymmetric unit.

If not only the OD-groupoid family of the structure but also the exact
stacking of the layers were known, then we could deduce the coordinates of
the atoms related by symmetry to an atom at xyz. From these we could then
— according to first principles — deduce a general formula for the Fourier
transform in terms of the atomic scattering factors f; and the coordinates

x;y2; of the atoms within an asymmetric unit, similar to the structure factor
formulae originally deduced by Lonsdale® and now in common use as part
of International Tables, Vol. 1.14

Because the exact stacking is not known and because we want the formula
to be valid for crystals with different stacking sequences, we shall introduce
parameters which characterize the stacking. The equipoints of a single layer
with plane space group P2a(a) are

[Lo] = [wyz; agz; 4 + vg.z; & + .y.2] (2)
where x and y stand for x+4m, and y--m,, respectively (m; equal 0,1,2, .. .),

whereas z stands for z only, and is referred to the vector E:, (see above). The
geometrical part ¢y(h,k,&) of its Fourier transform is, accordingly

@olh,k,&) = 4€>™* cos 2nky cos 2néz for h even (3a)

@o(h,k,&) = 4e¥™ih* gin 2xky sin 2néz for h odd . (3b)

- -

where (as in the following) the unit ¢ * of £ is taken as the reciprocal of c,.

The points of an even numbered layer Ly, related by symmetry to the point
(xyz) of layer L, have coordinates

[L2g] = [Lo] + (x24/2, 0, 29) (4)
those of the odd-numbered layers La,. 1
[Log1] = [Lo] + (1/4 + ag41/2, 0, 29 + 1) (5)
with a,==0 or 1. Thus the geometrical parts of the Fourier transforms are
p2q(hkE) = (—1)'2d" o220 gy (REE) (6)
and
92q+1(hkE) = P*(—1) 202" i1 o (hkE) (7)
respectively.
The Fourier transformation of the whole structure is thus
F(hk&) = S(hé)F o(th) (8)
with
To(hk&) = Zf @ (hkE) (9)
and
S(he) = S(—1yad exmizet | jH(—1)fagerh editda+DE (10)
q
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[S(h&)[? is periodic:
IS(h,&)|2 = |S(h-+4h'+2v, E--1'+v[2)2 (1)

where &', I, v may take any integral values.

DETERMINATION OF THE POSITION OF THE URANIUM ATOM

As a first approximation we may assume that the contributions from the
other atoms to the structure factors may be neglected in comparison with the
contribution from the uranium atoms. Thus from eqns. (9) and (3) it follows that

|Fo(hké)? = fi? cos?2rkyy cos?2nézy for h even (12a)
and
|Fo(hkE)|* = fi? sin22nky, sin?2xfz,; for b odd (12b)

Thus the intensities for 2 odd, i.e. on the diffuse streaks, ought to vanish or to
be very small at &-values for which £-z; is an integral multiple of 1/2. These
points on the streaks may easily be detected. Confusion with points at which
[S(h&)[? is small or vanishing may be excluded because of the known periodic-
ity of |S(h&)* along & [see eqn. (11)] and because they are the same for
different crystals with different values of |S(R&)[2. Actually, such small
intensities occur for £-values of about 10, 19, or 20 or an integral multiple
of about 9.7, so we may conclude that z;=0.052 (referred to c). If this is
correct, then sharp reflections should be weak or missing when [ is an odd

multiple of 4.8 or I an odd multiple of about 2.4. Actually rather weak

reflections occur for {=2, 3, 7, and 12. These values are near to odd multiples
of 2.4.

An approximate value of y; may be deduced from the fact that the sharp
reflections (h even) are extremely weak on the (h1£)-Weissenberg diagrams
and the diffuse maxima (h odd) are very strong, whereas the opposite is true
for the (h2&) diagrams. Thus y; must be very near ;. The origin of the single
layer may be conveniently chosen so that xy=0. The approximate position
of the uranium atom is thus (0, 0.25, 0.052).

According to eqn. (2), Patterson peaks due to the U—U-vectors are to be
expected at the following coordinates:

0 2yy 22y 3 0 22g; % 224 0
0 0.5 0.104; 1 0 0.104; L 0.5 0

(plus those related to them by orthorhombic symmetry). These positions
may be compared with the Patterson projections P(w,w) and P(u,v) of the
monoclinic crystal (Figs. 3 and 4) obtained before the OD-symmetry of these
structures had been discussed. In comparing them with the Patterson
positions just obtained, we have to keep in mind that the latter refer to
the large rectangular cell with c=4c,, and that P(u,v) is a projection along
the monoclinic c-axis. To facilitate an understanding of the projection
P(u,v), the monoclinic cell and half the large rectangular cell have been
outlined in Fig. 3.
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cm/2

cg/z 1 E’/
ym

ve/2 /2 A

Fig. 3. Patterson projection P(u,w) of the Fig. 4. Patterson projection P(u,») of the
monoclinic form with the monoclinic cell , monoclinic form.
and half the rectangular ‘“cell’’ outlined.
The v-values at which the Patterson peaks
are to be expected in space are indicated.
(Origin at the centre.)

So far we have discussed the uranium positions for the OD-groupoid
family of lower symmetry only. The argument holds equally well for the
family of higher symmetry, but these positions are now special positions on
the mirror plane. It is not unlikely that the whole structure also complies with
this higher symmetry and that the rest of the molecules occupy the general
positions of this family.

The variation of the intensity with varying A, which is clearly visible for
the weak reflections and maxima, is evidently due to the contributions from
the light atoms. This makes us hope that we shall be able to obtain their
positions as well. Work is being continued in this direction.

We wish to thank Professor Georg Lundgren for drawing our attention to the problem
and for his interest and valuable discussions. Many thanks are also due to Dr. Susan
Jagner of this Department for revising the English text. One of us (H.T.) is indebted to
the Swedish Natural Science Research Council for financial support.

The Patterson calculations were carried out on the SAAB D21 computer at the Uni-
versity of Goteborg Computer Centre.
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