The Crystal Structure of $(Fe_xNi_{1-x})_{22}Se_{16}$

ERLING RØST and KJELL HAUGSTEN

Kjemisk Institutt A, Universitetet i Oslo, Oslo 3, Norway

The crystal structure of the compound (Fe_xNi_{1-x})₂₂Se₁₆, (x=0.2) has been determined using X-ray methods. The crystal system is body centred tetragonal, with the lattice constants a=7.208 and c=11.393 Å. The most probable space group is $I\bar{4}m2$, and the selenium and metal atoms are distributed as follows:

```
0.275,
                       0.275.
8 Me at (g):
8 Me at (i):
4 Me at (f):
               0.278,
                       0 ,
                                0.326
               0
                       0.5
                                0.024
2 Me at (c):
               Ω
                       0.5 ,
                                0.25
               0.242,
8 Se at (i):
                                0,115
                       0.221,
               0
                                0.349
```

It was not possible to determine the mutual distribution of iron and nickel atoms.

The existence of the two isomorphous phases $(Co_xNi_{1-x})_{22}Se_{16}$ and $(Fe_xNi_{1-x})_{22}Se_{16}$ was reported by Haraldsen $et~al.^1$ In a later paper by Røst and Haugsten,² the value of x of the latter phase was given as 0.04 < x < 0.23 at 580° C. The crystal system of this phase was found to be body centred tetragonal, with the lattice dimensions a=7.164 and c=11.403 Å at the nickel-rich phase limit, whereas the corresponding values for the iron-rich sample are a=7.217 and c=11.410 Å. On further increase in the Fe/Ni ratio, another phase region with tetragonal structure appears. The lattice constants of this phase are a=3.73 and c=5.76 Å at 600° C. The structure is assumed to be of the rickardite $(Cu_{2.8}Te_2)$ type, which is an intermediate between the $C38(Ni_2In)$ and the B10(PbO) type structures.

The existence of the two ternary phases (Fe,Ni)₂₂Se₁₆ and (Co,Ni)₂₂Se₁₆ has been confirmed by Stevels *et al.*³ Under special conditions, they also obtained a similar metastable phase in the binary system Ni—Se.

EXPERIMENTAL

Single crystals of $(\text{Fe}_x \text{Ni}_{1-x})_{22} \text{Se}_{16}$ were obtained by the transport reaction method, using iodine as transporting agent. Samples used in an earlier investigation,² with the composition corresponding to x=0.2, $(\text{Fe}_{.116} \text{Ni}_{.468} \text{Se}_{.421})$ and traces of iodine were

Acta Chem. Scand. 23 (1969) No. 5

enclosed in evacuated silica tubes and annealed at $\sim 600^{\circ}$ C in a furnace in which there was a small temperature gradient. A number of small crystals were obtained after six weeks treatment, the one employed in the X-ray investigation being ~ 0.05 mm long by 0.02 mm.

Single crystal photographs were obtained using $MoK\alpha$ -radiation in an integrating Weissenberg camera of 57.3 mm diameter. The multiple film technique was applied, using Sn foils between the films, and intensity data were obtained during rotation of the crystal about the b-axis (the needle axis of the crystal). The determination of structure was based on reflections from the layers h0l to h6l, and of a total number of 370 reflections, only 191 were observable. The unobserved reflections were omitted from the final least squares refinements.

The atomic form factors employed were those given by Hanson $et\ al.^4$ Those for the metal atoms, were interpolated assuming 20 % Fe and 80 % Ni in each metal position.

No corrections were made for absorption or secondary extinction.

CRYSTAL DATA *

Fe_{.116}Ni₋₄₆₃Se_{.421}.

Tetragonal

 $a=7.208\pm0.002$ Å, $c=11.393\pm0.003$ Å.

Unit cell volume 585.9 Å³.

Observed density 7.135 g cm⁻³.

Unit cell content 38.01 (38) atoms, i.e. 16 Se and 22 Me atoms

(average 4.4 Fe and 17.6 Ni atoms).

Systematically absent reflections:

hkl when h+k+l=2n+1.

Intensities of hkl and $\bar{h}kl$ were estimated to be equal.

Possible space groups:

I422, I4mm, $I\overline{4}m2$, $I\overline{4}2m$, and I4mmm.

RESULTS AND DISCUSSION

The iron-rich samples of $(Fe_xNi_{1-x})_{22}Se_{16}$, and the nickel-rich rickardite-type phase of the Fe—Ni—Se system differ only slightly in gross composition.² The lattice constants of the former phase are approximately double those of the latter, and furthermore, the X-ray powder patterns of the two phases show similarities, even though the larger unit cell of $(Fe_xNi_{1-x})_{22}Se_{16}$ gives rise to a number of additional reflections. The choice of space group for $(Fe_xNi_{1-x})_{22}Se_{16}$ was therefore based on an assumed structural resemblance to the rickardite-type phase. In this structure type, the atomic arrangement is assumed to be as follows:

The z_1 - and z_2 -parameters are of the order of 0.25-0.30 and 0.7, respectively, in this structure.

^{*} Taken in part from an earlier investigation.2

Of the possible space groups for $(Fe,Ni)_{22}Se_{16}$, I4m2 appears to be the most fitting for the description of a structure which is comparable with that of the rickardite type, and the present determination is therefore based on this space group. The refinement of parameters was carried out by successive three dimensional Fourier syntheses, and by least squares refinements using programs written by Dahl *et al.*⁵ The full matrix least squares program was carried out using the weighting scheme No. 1:

```
\begin{array}{ll} \text{for } F_{\rm o} \leqq {\rm FB}, & w = {\rm A1}(F_{\rm o})^{\rm B1} \\ \text{for } F_{\rm o} \lessgtr {\rm FB}, & w = {\rm A2}(F_{\rm o})^{\rm B2} \\ \text{by taking A1} = 1.0, \ {\rm A2} = 14.5, \ {\rm B1} = 0, \ {\rm B2} = -0.5 \ {\rm and} \ {\rm FB} = 211. \end{array}
```

Only minor displacements in the Se positions occurred during the course of the work, whereas some of the metal positions were radically changed from

Table 1. Positional parameters (x,y,z), temperature factors (B), and estimated standard deviations (σ) for $(\text{Fe}_z\text{Ni}_{1-z})_{2z}\text{Se}_{1s}$.

	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$	\boldsymbol{B}	$\sigma(B)$
Me_{T} in $8(g)$	0.2751	0.0008	0.2751	0.0008	0		0.62	0.11
Me_{II}^{1} in $8(\tilde{i})$	0.2784	0.0012	0	_	0.3256	0.0007	0.92	0.13
Me_{III} in $4(t)$	0		0.5		0.0240	0.0011	0.90	0.18
Me_{IV} in $2(c)$	0	_	0.5		0.25		0.43	0.22
$\operatorname{Se}_{T}^{T}$ in $8(i)$	0.2418	0.0008	0		0.1154	0.0005	0.55	0.08
$\operatorname{Se}_{\mathbf{II}}^{\mathbf{I}}$ in $8(i)$	0		0.2211	0.0009	0.3494	0.0004	0.43	0.08

Table 2. Observed and calculated structure factors of $(Fe_xNi_{1-x})_{22}Se_{16}$. The columns contain $h, l, |F_o|$, and $|F_c|$, respectively.

k = 0 h 1 o 2 o 4 o 6 o 8 o 12 o 18 1 1	120 160 381 283 130 95 85	83 148 394 276 116 81	5 1 5 7 5 7 5 13 5 15 6 0 6 6	129 207 147 125 160 89 93 179 165	134 222 158 125 177 72 87 193 188	2 9 2 11 2 13 2 15 3 2 3 4 3 8 4 3	137 137 129 116 157 133 111 106	136 130 130 105 154 141 114 105 68	3 1 3 5 3 5 3 11 3 13 4 2 4 4	191 166 60 190 90 148 226 61 251	178 166 52 197 84 134 227 52 256	4 3 4 7 4 11 4 15 5 0 5 4	114 76 121 170 111 91 112 182 162	109 62 108 171 98 104 105 185 161	6 10 7 1 7 3 7 7 7 9 7 11 8 0 8 4 8 8	139 96 104 127 147 90 213 80	115 87 89 115 131 101 228 71 98
1 3 1 5 1 7	116 202 104	121 209 108	6 10 7 1 7 3	142 103 135	150 105 143	4 5 4 7 4 9	139 79 141	153 74 149	4 10 4 12 4 14	172 77 85	169 67 78	5 6 5 8 6 1	68 105 115	66 104 118	9 5 k = 5	126	120
1 9 1 13 1 15 2 2	198 121 103 342	209 129 106 322	7 7 7 9 7 11 7 15	126 149 114 138	130 180 120 126	4 13 4 15 5 2 5 4	95 76 87 140	99 77 92 139	5 1 5 5 5 7 5 9	97 211 122 42	89 225 116 50	6 3 6 9 6 13 7 0	70 121 103 100	55 113 86 90	h 1 5 4 5 8 5 14	98 105 112	100 90 105
2 4 2 6 2 8 2 10	100 327 75 220	96 329 64 229	8 0 8 4 8 6 8 8	273 91 80 111	293 90 78 114	5 8 6 1 6 5 6 9	59 45 99 75	60 59 100 <u>7</u> 7	5 11 5 13 5 15 6 0	161 84 108 162	173 96 111 172	7 10 8 7 9 2 9 4	97 85 130 122	90 78 131 114	6 5 6 7 6 11 7 0	138 79 119 114	127 77 116 104
2 12 2 14 2 18 3 1	108 110 79 89	93 97 96 88	9 1 9 5 9 7 9 9	79 138 103 91	87 146 119 71	6 11 7 0 7 2 7 4	93 121 123 89	82 117 137 81	6 2 6 4 7 1 7 3	126 305 131 141	132 335 141 138	k = 4 h 1 h 0	491	509	7 2 7 4 7 8 8 5	159 138 129 92	171 121 112 102
3 3 3 5 3 7 3 9	189 80 111 237	193 77 121 241	9 13 10 0 10 2 10 6	141 123 87 108	144 130 95 108	7 8 8 5 k = 2	95 104	109 85	7 9 8 2 8 6 9 5	159 127 140 143	174 129 144 145	4 4 4 6 4 8 5 1	116 177 180 97	109 167 173 88	k = 6 h 1 6 0	124	104
3 11 3 15 4 0 4 2	116 127 709 76	120 136 705 47	k = 1 h 1 1 h	126	141	h 1 2 0 2 2 2 4	320 336 614	289 315 611	10 4 k = 3 h 1	115	130	5 5 5 7 5 9 5 13	169 120 119 149	173 108 94 140	6 4 7 1 7 9 8 2 8 6	207 109 114 106	206 105 106 88 86
4 4 4 6 4 8 4 12	120 239 207 89	126 255 214 75	2 1 2 3 2 5 2 7	114 95 182 80	107 97 194 78	2 6 2 10 2 12	78 70 128 81	62 58 117 71	3 0 3 8 3 10 4 1	157 108 100 86	128 98 88 73	6 0 6 2 6 6	60 166 149	54 155 151	8 6	105	86

Acta Chem. Scand. 23 (1969) No. 5

Table 3. Interatomic distances in $(Fe_xNi_{1-x})_{22}Se_{16}$. The estimated standard deviations are in the range 0.006 to 0.013 Å.

From Me I	(0.275	0.275	0)		From Se I	(0.242	0	0.115)	
- 8e I	(0.242	0	0.115)	2.39 Å	- Se I	(-0.242	0	0.115)	3.49 A
**	(0	0.242			11	(0	0.242	-0.115)	3.60 "
- Se II	(0.279	0.5	0.151)	2.36 "	"	(0	-0.242	-0.115)	11 11
11	(0.5	0.279	-0.151)	91 11	"	(0.758	0	0.115)	3.72 "
- Me II	(0.5	0.222	0.1749	2.59 "	11	(0.5	0.258	0.385)	4.04 "
	(0.222	0.5	-0.174)	0 11	n	(0.5	-0.258	0.385)	и и
- Me III	(0	0.5	0.024)	2.58 "	- Se II	(0	0.221	0.349)	3.56 "
	(0.5	0	-0.024)	11, 11	"	(0	-0.221	0.349)	" "
	/0	_			**	(0.279	-0.5	0.151)	3.64 "
From Me II	(0.278	0	0.326)		"	(0.279	0.5	0.151)	
	(0 0) 0				"	(0.5	0.279	-0.151)	4.09 "
- Se I	(0.242	0 0.258	0.115)	2.41 Å 2.54 "		(0.5	-0.279	-0.151)	" "
n	(0.5		0.385)	2.54 "	- Me I	(0.275	0.275	0)	2.39 "
- Se II	(0.5	-0.258 0.221	0.385)	2.58 "		(0.275	-0.275	0)	
- 5e 11	(0		0.349)	2.50 "	- Me II	(0.278	0	0.326)	2.41 "
- Me I	(0.225	-0.221 0.225	0.349) 0.5)	2.59 "		(0.5	0.222	0.174)	2.54 "
- Me I	(0.225	-0.225		2.59 "		(0.5	-0.222	0.174)	
- Me II	(0.5	0.222	0.5) 0.174)	2.84 "	- Me III	(0.5	0	-0.024)	2.45 "
- Me II	(0.5	-0.222	0.174)	2.04	From Se II	(0	0.003	0.01.01	
- Me III	(0.5	0.222	0.524)	2.77 "	From Se 11	(0	0.221	0.349)	
- Ne 111	(0.)	Ū	0.7247	E-11	- Se II	(0	-0.221	0.349)	3.19 Å
From Me III	(0	0.5	0.024)		- 56 11	(0.279	0.5	0.349)	3.63 "
	, ,	٠.,	0.024,		11	(-0.279	0.5	0.151)	3.03 "
- Se I	(0	0.242	-0.115)	2.45 A	19	(0	0.779	0.349)	4.02 "
tt	(0	0.758	-0.115)	11 11	11	(-0.221	0	0.651)	4.11 "
- Se II	(0.279	0.5	0.151)	2.47 "	U	(0.221	ō	0.651)	11 11
17	(-0.279	0.5	0.151)	н п	- Se I	(0.242	ō	0.115)	3.56 "
- Me I	(0.275	0.275	0)	2.58 "	11	(-0.242	0	0.115)	50,10 11
11	(0.275	0.725	0)	ir 11	n	(0.5	0.258	0.385)	3.64 "
"	(-0.275	0.275	0)	H 11	11	(-0.5	0.258	0.385)	"" "
	(-0.275	0.725	0)	It ti	ti	(0.258	0.5	0.615)	4.09 "
- Me II	(0.222	0.5	-0.174)	2.77 "	"	(-0.258	0.5	0.615)	11 11
"	(-0.222	0.5	-0.174)	й н	- Me I	(0.225	0.225	0.5	2.36 "
- Me IV	(0	0.5	0.25)	2.58 "	11	(-0.225	0.225	0.5	11 11
					- Me II	(0.278	0	0.326)	2.58 "
From Me IV	(;0	0.5	0.25)		."	(-0.278	0 -	8:376}	2.47 "
- Se II	()	0.221	0.349)	2.31 Å	- Me III - Me IV	(o (o	0.5 0.5	0.4(6)	2.31 "
- 56 11	(0	0.779	0.349)	11 II	- 140 14	,,,	0.,	0.27	2.31
н	(0.279	0.5	0.151)	11 11					
**	(-0.279	0.5	0.151)	11 11					
- Me III	(0	0.5	0.024)	2.58 "					
- 110 111	(0	0.5	0.476)	,~ "					
		/	(0)						

those of the rickardite-type structure. Refinements were performed assuming anisotropic temperature factors, and attempts were made to distinguish between iron and nickel atoms. The quality of the intensity material appears to be insufficient for such determinations, however. The final refinements were therefore executed assuming isotropic temperature factors, the atomic form factors for the metal atoms being taken as the weighted mean for Fe and Ni. Refinements proceeded until no parameter shifts occurred, resulting in a reliability factor $(\sum ||F_o|-|F_c||/\sum |F_o|)$ of 0.069. The positional parameters and temperature factors of the atoms, together with estimated standard deviations, are to be found in Table 1, while the values of the observed and calculated structure factors are given in Table 2.

A perspective view of an eighth part of the unit cell (a/2, b/2, c/2) is shown in Fig. 1. The unit cell of the rickardite-type structure is shown in the same figure, for comparison.

Interatomic distances in (Fe,Ni)₂₂Se₁₆ are presented in Table 3, where the shortest Me—Me distances are seen to have the substantially equal values of 2.58 and 2.59 Å. The shortest Me—Se distances are 2.31 Å, and the shortest

Se—Se distances are 3.19 Å. The metal atoms Me_I, Me_{III}, and Me_{IV} are coordinated with four Se atoms in a distorted tetrahedral arrangement, and Me_{II} by five Se atoms in a distorted quadrangular prism. In addition to the Se atoms, the metal atoms are surrounded by a varying number of metal atoms, and the Me—Se distances are clearly dependent on the coordination

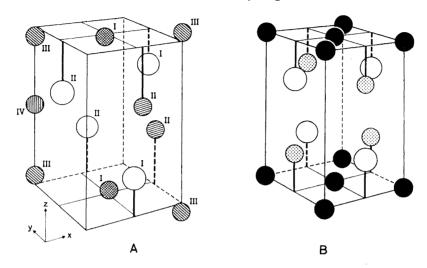


Fig. 1. A: An eighth part of the unit cell of $(Fe_xNi_{1-x})_{22}Se_{16}$: a/2, b/2, c/2 Open circles represent the selenium positions, the others being those of the metal atoms. B: A unit cell of the rickardite type structure. The dotted circles represent partly occupied metal positions.

number. Thus the shortest Me—Se distances (2.31 Å) are those from the Me_{IV} atoms which have only two metal atoms in addition to the four Se atoms as nearest neighbours. The corresponding distances from Me_I, which is coordinated with four metal and four selenium, are 2.36 (2) and 2.39 Å (2). The Me—Se distances are even greater when measured from the positions Me_{II} and Me_{III}, in accordance with the larger coordination number.

The environments of the metal atoms in the present structure are similar to those found in the metal-rich binary phases $Fe_{1+z}Se$ and Ni_3Se_2 . In the former, having the B10—C38 type structure, the Fe atoms are tetrahedrally coordinated with four Se atoms at 2.37 Å, and four Fe atoms at 2.66 Å^{6,7}. In the rhombohedral phase Ni_3Se_2 , the Ni atoms are tetrahedrally surrounded by four Se atoms at 2.36 Å, and by four Ni atoms at a distance of 2.57 Å.8 The similarity in the Me—Se distances of the latter two structures indicates that one cannot expect to distinguish between Fe and Ni atoms on the basis of interatomic distances and coordination numbers in $(Fe,Ni)_{22}Se_{16}$. The fact that Stevels $et~al.^3$ have obtained this phase in the binary system Ni—Se (as a metastable compound), may indicate that the Fe atoms are not necessarily associated with fixed positions, but possibly distributed over all of the metal positions.

REFERENCES

- 1. Haraldsen, H., Møllerud, R. and Røst, E. Acta Chem. Scand. 21 (1967) 1727.
- 2. Røst, E. and Haugsten, K. Acta Chem. Scand. 23 (1969) 388.
- 3. Stevels, A. L. N., Bouwma, J., Wiegers, G. A. and Jellinek, F. Rec. Trav. Chim. 84 (1968) 1585.
- 4. Hanson, H. P., Herman, F., Lea, J. D. and Skillman, S. Acta Cryst. 17 (1964) 1040.
- 5. Dahl, T., Gram, F., Groth, P., Klewe, B. and Rømming, Chr. To be published in Acta Chem. Scand.
- Hägg, G. and Kindström, A.-L. Z. physik. Chem. (Leipzig) B 22 (1933) 453.
 Haraldsen, H. and Grønvold, F. Tidsskr. Kjemi, Bergvesen Met. 4 (1944) 48.
 Hiller, J.-E. and Wegener, W. Neues Jahrb. Mineral. 94 (1960) 1147.

Received November 1, 1968.