replaced by hexadecane (Figs. 1 A and 1 C) is even more pronounced. The L_2 area is reduced to a small region, where the emulsifier dissolves the hydrocarbon, and the area of the D-phase is also reduced to a high degree. The E-phase is able to solubilize considerably more hexadecane than p-xylene. The continuous L_1 region in Fig. 1 A is transformed into three isotropic phases; one liquid and two viscous isotropic ones (I_1 and I_2) in Fig. 1 C.

The reason for this markedly changed phase behaviour is partly to find in the difference of the polarizability of the hydrocarbon which has an influence on the site of the molecules in the micells as shown by NMR investigations. This would explain the change in L₁ area when p-xylen is replaced by hexadecane, but could scarcely explain the excess solubility of the hexadecane in the E-phase. This behaviour is considered to have a close connection

with the packing of the xylene molecules and the benzene part of the emulsifier, a fact that may favour a lamellar structure.

- Friberg, S., Mandell, L. and Larsson, M. J. Colloid Interf. Sci 29 (1969) 155.
- 2. To be published.
- Mandell, L. and Ekwall, P. Acta Polytech. Scand. Ch. 74 I (1968).
- Fontell, K., Mandell, L., Lehtinen, H. and Ekwall, P. Acta Polytech. Scand. Ch. 74 III (1968).
- Ekwall, P., Mandell, L. and Fontell, K. Acta Chem. Scand. 22 (1968) 373.
- Ekwall, P., Mandell, L. and Fontell, K. Acta Chem. Scand. 22 (1968) 1543.
- Fontell, K., Mandell, L. and Ekwall, P. Acta Chem. Scand. 22 (1968) 3209.
- Eriksson, J. C. and Gillberg, G. Acta Chem. Scand. 20 (1966) 1108.

Received March 1, 1969.

Bacterial Carotenoids XXVIII*

C₅₀-Carotenoids

4. Stereochemistry of the Terminal Double Bonds of *Dehydrogenans*-P439

U. SCHWIETER and S. LIAAEN-JENSEN

Hoffman-La Roche, Basel, Switzerland, and Organic Chemistry Laboratories, Norway Institute of Technology, Trondheim, Norway

A year ago we reported on the structure determination of dehydrogenans-P439 (1). The configuration around the terminal double bond was not established and was arbitrarily chosen as trans between the two largest substituents. Support for the transconfiguration is now obtained from the

* Part XXVII. Acta Chem. Scand. 22 (1968) 1171.

aldehyde signal in the PMR-spectrum of P439-dialdehyde (2), compared with data recently reported for related cis and trans α,β -unsaturated aldehydes (Table 1, p. 1058).

- Liaaen-Jensen, S., Hertzberg, S., Weeks, O. B. and Schwieter, U. Acta Chem. Scand. 22 (1968) 1171.
- Klinck, R. E. and Stothers, J. B. Can. J. Chem. 44 (1966) 45.
- Bertele, E. and Schudel, P. Helv. Chim. Acta 50 (1967) 2445.
- Flath, R. A., Lundin, R. E. and Teranishi, R. Tetrahedron Letters 1966 295.
- Stevens, K. L., Lundin, R. E. and Teranishi,
 R. J. Org. Chem. 30 (1965) 1690.
- 6. Thomas, A. F. and Ozainne, M. Chem. Commun. 1969 47.
- 7. Schwieter, U. Unpublished results; cf. Ref. 8.
- 8. Rüegg, R., Pfiffner, A. and Montavon, M. Recherches (Paris) 1966, No. 15, 3.

Received February 21, 1969.

Tiglic aldehyde OHC Angelic aldehyde Central double bond omitted. Gentral double bond omitted. B-Sinensal 5,3 Central double bond omitted. 2-truns-2,6-Dimethyl-oct-2,6-dier truns-B-C ₁₄ -aldehyde truns-B-C ₁₄ -aldehyde cis-B-C ₁₄ -aldehyde	s aldehyde		trans	cis
	lio aldehyde	61	0.68 (CCI ₄)	
		n		-0.10
	ensal 4,3 ral double bond omitted.	to 4	0.35 (CCI ₄) 0.30 (CCI ₄)	
	iensal ^{5,3}	ಸ್ತ್ರಣ	0.67 (CCI ₄) 0.70 (CDCI ₃)	
945 4 4	2-truns-2,6-Dimethyl-oct-2,6-dien-1-al	9	0.74 (CCI ₄)	
	2-cis- 2 ,6-Dimethyl-oct- 2 ,6-dien- 1 -al	9		-0.01 (CCI,
	$eta \cdot eta$ -C $_{14}$ -aldehyde	! -	0.68 (CCI4)	
S Calcumpant Didoleradars R 12 Calcumpant R 10	-C ₁₄ -aldehyde	7		-0.22 (CCI,)
9 -trans-15,15 -Didenyaro-p-a, CHO carotenal	<i>9'-trans</i> -15,15'-Didehydro-β-apo-8'- carotenal	7	0.53 (CDCl ₃)	
$9'-cis-15,15'$. Didehydro- β -apo-8'-carotenal	$s.15,15'$ -Didehydro- β -apo-8'-tenal	2		-0.33 (CDCI ₃)
CHO CHO P439 dialdehyde	9 dialdehyde	-	0.60 (CDCl ₃)	

Acta Chem. Scand. 23 (1969) No. 3