Heats of Ionization of Some Alkylammonium and Hydroxy Alkylammonium Compounds

G. ÖJELUND and I. WADSÖ

Thermochemistry Laboratory,* University of Lund, Lund, Sweden

Aqueous heats of dissociation, ΔH i, for a number of aliphatic ammonium compounds have been determined calorimetrically at 25°C.

 $(RNH_3^+ \rightarrow RNH_2 + H^+)aq; \quad \mu = 0.07$

Amine	⊿H _i , kJ/mole
$CH_3(CH_2)_2NH_2$	57.76 ± 0.03
(CH ₃) ₂ CHNH ₂	58.24 ± 0.07
$CH_3(CH_2)_3NH_2$	$\textbf{58.51} \pm \textbf{0.03}$
$(CH_3)_3CNH_2$	60.16 ± 0.08
HOCH ₂ (CH ₃) ₂ CNH ₂	54.10 ± 0.03
$(HOCH_2)_2CH_3CNH_2$	49.91 ± 0.03
$(HOCH_2)_3CNH_2$	47.48 ± 0.03
HOCH ₂ CH ₂ NH ₂	50.50 ± 0.04
$HOCH_2(CH_2)_2NH_2$	53.13 ± 0.04

Comparisons are made with literature data. ΔH and ΔS values for the dissociation reactions are discussed.

The present study is part of a program aiming at the determination of thermodynamic data for simple organic compounds in aqueous solution. Here, results are reported from a calorimetric investigation on the protonation of some aliphatic amines: simple alkyl amines and some of their hydroxy derivatives. Heats of dissociation of the ammonium compounds have been calculated from the calorimetric results.

EXPERIMENTAL

Materials. All compounds used in the calorimetric experiments were of commercial origin. The alkyl amines, $PrNH_2$, $BuNH_2$, t-BuNH $_2$ (Fluka; purissimum), and i-PrNH $_2$ (Eastman), were purified by fractional distillation at atmospheric pressure through a 20-plate column until their purities as judged by gas chromatography and titration with standard hydrochloric acid were 99.9 % or better.

^{*} Sponsored by the Swedish Natural Science Research Council and the Swedish Council for Applied Research.

Ethanol amine (Eastman) and propanol amine (Fluka, purissimum) were fractionated at 12 mm Hg. Titration gave the equivalent weights 61.17 (calc. 61.08) and 75.12 (calc. 75.11), respectively.

2-Amino-2-methyl-propanol-1 (Fluka, purissimum) was purified by fractional freezing out twice, at 27.9°C and 27.4°C, respectively. Titration with hydrochloric acid gave

the equivalent weight 88.77 (calc. 89.14).

2-Amino-2-methyl-1,3-propanediol (Fluka, purum) was purified by recrystallization twice from a methanol-ether (1:3) mixture. The measured equivalent weight was 104.52 (calc. 105.14).

2 Amino-2-hydroxymethyl-1,3-propanediol ("Tris" or "THAM") was a standard

sample for the "THAM-test reaction" prepared according to the procedure in Ref. 1. Constant boiling hydrochloric acid was prepared 2 from analytical grade concentrated acid. Titration with standard sodium hydroxide solution showed the concentration to be 20.26 ± 0.01 % by weight.

Calorimetric apparatus. The calorimetric experiments were carried out in isothermal jacket calorimeters with 100 ml reaction vessels made from thinwalled glass. Measurements on i-PrNH₂ and t-BuNH₂ were made with the calorimeter described in Refs. 3, 4. For the other compounds, an LKB Precision Reaction Calorimeter 8700 was used.

(This latter calorimeter was based on the design in Ref. 3.)

Calibration experiments. In the experiments where the "prototype" calorimeter 4 was used, electrical calibrations were performed on the system before the reaction had taken place. Both for the reaction and the calibration experiments the final temperature was 25.00°C and calculated enthalpy values will thus refer to this temperature.

With the LKB Calorimeter reaction experiments were performed symmetrically around 25.00°C. Electrical calibrations were made, over the same temperature range, both before and after the reaction had taken place. Mean calibration values were used and derived ΔH values will thus refer to 25.00°C.

Calorimetric calculations. For the reaction experiments the reaction period was about 1 min and corrected resistance values were computed by extrapolating the fore and after linear parts of the calorimetric curve to the time corresponding to 63 % of the heat evolution (Dickinson's extrapolation method). For the electrical calibrations extrapolations were taken to the time corresponding to 50 % heat evolution. Heat evolved in an experiment, Q, was calculated from the expression $Q = \Delta R \cdot \varepsilon / R_{\rm m}$

where ΔR is the corrected thermistor resistance change and $R_{\rm m}$ is the mean resistance value in the reaction experiment. The value for the calibration constant, e, was calculated from the expression $\varepsilon = Q_{\rm c} \cdot R_{\rm mc} / \Delta R_{\rm c}$ where $Q_{\rm c}$ is the electrical energy introduced in the calibration experiment, $\Delta R_{\rm c}$ is the change in thermistor resistance and $R_{\rm mc}$ the mean

In the main experiments aqueous solutions of the amines were protonated by hydrochloric acid. The calorimetric liquids consisted of amine buffers which were prepared from 0.05 M hydrochloric acid by addition of amine until the pH value was nearly equal to the pK_a value of the ammonium compound formed. Care was taken to avoid carbon dioxide uptake by the buffer solution. The calorimeter vessel was charged with 100 ml of buffer solution and the sealed glass ampoule contained about 2.5 mmole of constant boiling hydrochloric acid. The amine was in excess and small amounts of impurities should therefore not interfere with the measurements.

For most of the compounds investigated, the pH of the calorimetric liquid was rather high and a significant amount of hydroxyl ions was also reacted. This quantity was calculated from pH values measured before and after the reaction had taken place. pH-Measurements were made with a Radiometer pH meter, Type PHM 22 p, and the equipment was standardized with NBS standard samples of potassium biphthalate and

potassium hydrogen tartrate.

Heat of dilution of constant boiling hydrochloric acid was determined in several series of experiments where the ionic strength of the calorimetric liquid was the same as in the protonation experiments. Dilutions were performed in 0.05 M solutions of BuNH₃Cl, HOCH₂CH₂NH₃Cl, (HOCH₃)₃CNH₃Cl and, as a comparison, NaCl. In the experiments with the ammonium compounds the calorimetric liquids were prepared by neutralization of amine solution. A slight excess of acid was added to make the pH about 3.

Units of measurements. Results of the calorimetric experiments are expressed in terms of absolute joules and refer to isothermal processes at 25.00°C.

RESULTS

To arrive at enthalpy changes for the dissociation of the ammonium compounds in dilute aqueous solution, $\Delta H_{\rm i}$, corrections must be applied to account for heat evolution caused by hydroxyl ion neutralization and for the heat of dilution of the ampoule content. In the main experiments pH values were rather high and in most cases a significant amount of hydroxyl ions, $m_{\rm OH}$, was also neutralized. This quantity was calculated from the volume of the calorimetric liquid and the pH values measured. The difference between the amount of acid contained in the ampoule, m, and $m_{\rm OH}$ gives the amount of acid which will protonate the amine, $m_{\rm corr}$. Heat of neutralization of hydroxyl ions at the final ionic strength of the experiments, $\Delta H_{\rm n}$, was taken to be $-56.4~{\rm kJ/mole.}^5$

Results from measurements of heat of dilution of constant boiling hydrochloric acid, $\Delta H_{\rm dil}$, are summarized in Fig. 1. It is seen that, in the range investigated, linear relationships are obtained. For solutions of BuNH₃Cl and HOCH₂CH₂NH₃Cl the results are identical whereas a slightly lower value was obtained for the (HOCH₂)₃CNH₃Cl solution. For the dilution corrections (eqn. 2) the line for the (HOCH₂)₃CNH₃Cl solution was used for HOCH₂(CH₃)₂CNH₂, (HOCH₂)₂CH₃CNH₂, and (HOCH₂)₃CNH₂ whereas the other line was used for all the other compounds.

Heat evolved in the idealized process (Q_{corr}) :

$$(RNH2 + H+ \longrightarrow RNH3+)aq, \qquad \mu = 0.07$$
 (1)

was calculated from the expression

$$Q_{\text{corr}} = Q_{\text{exp}} + (m - m_{\text{corr}})\Delta H_{\text{n}} + m\Delta H_{\text{dil}}$$
 (2)

The enthalpy change, ΔH_i , at the idealized dissociation reaction:

$$(RNH_3^+ \longrightarrow RNH_2 + H^+)aq, \qquad \mu = 0.07$$
 (3)

is equal to $Q_{\rm corr}/m_{\rm corr}$.

Results of the main calorimetric experiments and the calculations are summarized in Table 1. Uncertainties given are the standard deviation of the mean.

Comparison with previous measurements. In Table 2 a comparison is made between the present ΔH_i values and literature data. The present calorimetric

Table 1. Results of calorimeteric measurements of the heat of ionization, $\varDelta H_{\rm i},$ for some ammonium compounds.

$\begin{array}{c} \mathrm{CH_3(CH_3)_3NH_2} \\ \mathrm{Duffer}, \ \mu = 0.05 \\ \mathrm{pH_{start}} = 10.71 \\ \mathrm{pH_{start}} = 10.71 \\ \mathrm{pH_{start}} = 2.8898 \\ \mathrm{2.2898} \\ \mathrm{2.2567} \\ \mathrm{2.4924} \\ \mathrm{2.4570} \\ \mathrm{162.43} \\ \mathrm{142.77} \\ \mathrm{126.09} \\ \mathrm{58.43} \\ \mathrm{58.51} \\ \mathrm{58.51} \\ \mathrm{58.51} \\ \mathrm{CCH_3)_2CHNH_2} \\ \mathrm{pH_{start}} = 10.78 \\ \mathrm{2.8057} \\ \mathrm{2.4925} \\ \mathrm{2.4574} \\ \mathrm{2.4576} \\ \mathrm{161.43} \\ \mathrm{142.77} \\ \mathrm{126.09} \\ \mathrm{58.43} \\ \mathrm{58.51} \\ \mathrm{58.51} \\ \mathrm{142.77} \\ \mathrm{126.09} \\ \mathrm{58.43} \\ \mathrm{58.51} \\ \mathrm{142.77} \\ \mathrm{126.09} \\ \mathrm{58.43} \\ \mathrm{58.51} \\ \mathrm{170.31} \\ \mathrm{58.39} \\ \mathrm{58.51} \\ \mathrm{58.51} \\ \mathrm{190.72} \\ \mathrm{10.738} \\ 10.7$	Calorimetric liquid	HCl m	$m_{ m corr}$	Q_{expt} joule	$Q_{ m corr}$ joule	$\Delta H_{ m i}$ kJ/mole
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH _o (CH _o) _o NH _o	1.8822	1.8455	121.39	106.60	57.76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	buffer, $\mu = 0.05$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pristart 10.01					
$\begin{array}{c} \mathrm{CH_3(CH_3)_3NH_2} \\ \mathrm{buffer}, \ \mu = 0.05 \\ \mathrm{pH_{start}} = 10.71 \\ \\ 2.2898 \\ 2.2898 \\ 2.2567 \\ 2.4924 \\ 2.4570 \\ 2.1907 \\ 2.1580 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
buffer, $\mu = 0.05$ 2.4228 2.3893 158.00 139.80 58.51 2.481 2.2898 2.2567 149.40 132.11 58.54 2.4924 2.4570 162.43 143.71 58.49 2.1907 2.1580 142.77 126.09 58.43 58.51 2.4924 2.4570 162.43 143.71 58.49 2.1907 2.1580 142.77 126.09 58.43 58.51 2.4924 2.4574 161.43 142.70 58.07 2.4925 2.4574 161.43 142.70 58.07 2.4925 2.4574 161.43 142.70 58.07 2.4925 2.4574 161.43 142.70 58.07 2.4925 2.4574 2.4925 2.4574 161.43 142.70 58.07 2.4925 2.4620 2.6017 171.94 151.89 58.38 3.0420 2.00.62 177.29 58.28 2.6420 2.6017 171.94 151.89 58.38 3.2721 3.2218 212.29 187.61 58.23 58.24 2.400 2.6017 2.2200						57.76 ± 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₃ (CH ₂) ₃ NH ₃	2.6307	2.5956	171.67	152.00	58.56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.3893	158.00	139.80	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				149.40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rstart					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						58.51 ± 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(CH ₃) ₂ CHNH ₂	2.9629	2.9168	192.83	170.31	58.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.4925	2.4574	161.43	142.70	58.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r-start					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.6420	2.6017	171.94		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
buffer, μ =0.05 pH $_{\rm start}$ = 10.74 2.8628 2.8220 191.47 170.00 60.24 2.998 $_{\rm start}$ = 10.74 2.9680 201.49 178.91 60.28 2.9985 2.9550 200.03 177.51 60.07 2.9644 2.9215 198.51 176.20 60.31 60.16 176.20 60.16 176.20 60.31 60.16 176.20 60.1						58.24 ± 0.0
buffer, μ =0.05 pH $_{\rm start}$ = 10.74 2.8628 2.8220 191.47 170.00 60.24 2.998 $_{\rm start}$ = 10.74 2.9680 201.49 178.91 60.28 2.9985 2.9550 200.03 177.51 60.07 2.9644 2.9215 198.51 176.20 60.31 60.16 176.20 60.16 176.20 60.31 60.16 176.20 60.1	(CH ₃) ₃ CNH ₃	3.0014	2.9585	199.72	177.21	59.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	buffer, $\mu = 0.05$	2.8628	2.8220	191.47	170.00	60.24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$pH_{stort} = 10.74$	3.0115	2.9680	201.49	178.91	60.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Start		2.9550			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						60.16 ± 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HOCH.(CH.).CNH.	2.2654	2.2622	137.75	122.41	54.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					105.10	54.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$pH_{\text{stort}} = 9.70$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r-start ****					54.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				153.09	136.11	54.09
$\begin{array}{c} \text{buffer, $\mu = 0.05$} \\ \text{pH}_{\text{start}} = 9.04 \\ \text{pH}_{\text{start}} = 9.04 \\ \end{array} \begin{array}{c} 2.0167 \\ 2.0354 \\ 2.2975 \\ \end{array} \begin{array}{c} 2.0161 \\ 2.0349 \\ 2.2969 \\ \end{array} \begin{array}{c} 114.19 \\ 115.26 \\ 101.60 \\ \end{array} \begin{array}{c} 100.60 \\ 49.90 \\ 114.71 \\ \end{array} \begin{array}{c} 49.94 \\ \hline 49.91 \\ \end{array} \\ \end{array} \\ \begin{array}{c} (\text{HOCH}_2)_3 \text{CNH}_2 \\ \text{pH}_{\text{start}} = 8.19 \\ \text{pH}_{\text{start}} = 8.19 \\ 2.3824 \\ 2.5012 \\ \end{array} \begin{array}{c} 2.3444 \\ 2.3823 \\ 2.5011 \\ \end{array} \begin{array}{c} 127.09 \\ 131.44 \\ 115.21 \\ 135.47 \\ \end{array} \begin{array}{c} 111.40 \\ 47.52 \\ 118.70 \\ 47.46 \\ \end{array}$						54.10 ± 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(HOCH,),CH,CNH,	1.6170	1.6165	91.57	80.60	49.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	buffer, $\mu = 0.05$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•				49.91 ± 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(HOCH ₂) ₃ CNH ₂	2.3444	2.3443	127.09	111.40	47.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	buffer, $\mu = 0.05$					
2.5012 2.5011 135.47 118.70 47.46						
	i start					
18 10				-	_	${47.48}\pm0.0$

Acta Chem. Scand. 22 (1968) No. 8

Mable	7	Continued.
Table	1.	Continuea.

$ ext{HOCH}_2 ext{CH}_2 ext{NH}_2 \\ ext{buffer, } \mu = 0.05 \\ ext{pH}_{ ext{start}} = 9.60 $	2.1221 2.0525 2.4349 2.1218 2.0583	2.1197 2.0501 2.4323 2.1194 2.0560	121.36 117.45 139.42 121.53 118.01	106.90 103.41 122.90 107.09 104.00	50.43 50.44 50.53 50.53 50.58
					50.50 ± 0.03
$\mathrm{HOCH_2(CH_2)_2NH_2}$ buffer, $\mu = 0.05$ $\mathrm{pH_{start}} = 10.24$	1.7524 1.7839 1.8252 2.2432 2.5896	1.7449 1.7763 1.8168 2.2326 2.5780	105.00 106.74 109.38 134.21 155.28	92.71 94.20 96.60 118.51 137.20	53.12 53.03 53.17 53.08 53.22 53.13 + 0.03

results refer to an ionic strength of about 0.07 and a total buffer concentration of 0.1 mole/l. Most of the literature values are obtained from equilibrium measurements and refer to infinite dilution. However, as the idealized process $(RNH_3^+ \to RNH_2 + H^+)$ aq is an isoelectric reaction, only a minor influence from the ionic strength on the ΔH_i values is to be expected.

Inspection of Table 2 shows a good agreement between the present calorimetric values and those derived from equilibrium measurements. The present ΔH_i value for BuNH₃⁺ is in excellent agreement with the calorimetric value (μ =0.2) reported earlier.⁴ However, the recent calorimetric ΔH_i values ²³ for EtNH₃⁺ and, in particular, HO(CH₂)₂NH₃⁺ are considered to be seriously in error. (These values will be still lower if due consideration is taken to the dilution of 1 M HCl and to neutralization of hydroxyl ions presumably present.)

DISCUSSION

It is generally recognized that thermodynamic data for an aqueous ionization must be interpreted in terms of changes in solute-solvent interactions as well as in parameters characteristic for the acid-base system under investigation. It is frequently noted that it is easier to correlate ΔG_i values with changes in structural parameters than to make corresponding correlations with ΔH_i or ΔS_i . This is explained by the fact that ΔH_i and $T\Delta S_i$ terms tend to compensate each other to a large extent; the "compensation law". Splitting up ΔG_i into an enthalpy and an entropy term will often make the energetics look more complex but will at the same time bring about a more realistic picture of the studied process.

For the purpose of discussion some thermodynamic quantities for the investigated compounds have been summarized in Table 2. As a comparison data are also given for $MeNH_3^+$ and $EtNH_3^+$. Where available, the calorimetrically determined ΔH_1 values have been used to calculate the entropy data.

Entropy changes. The pattern observed for the alkyl ammonium compounds is similar to what has been noted for other ionization processes. For an acid ionization process involving earboxylic acids (see, e.g., Ref. 10) or thiols 11

$$(AH \longrightarrow A^{-} + H^{+})aq$$
 (4)

Table 2. Thermodynamic data for the ionization process $(RNH_3^+ \to RNH_2^+ + H^+)$ aq. Data refer to 25°C except for $EtNH_3$. Uncertainties for the present ΔH_i values include estimates of systematic errors.

	$\Delta G_{ m i}^{\circ}$ k $ m J/mole$	⊿H _i ° kJ	∆S;°	
Amine		Lit.data	This work	<i>∆S</i> _i ° J/mole, °C
CH ₃ NH ₃	60.72 4	55.00 4		19.2 4
CH ₃ CH ₂ NH ₂	60.65 ^b	56.82 ^b 47.57 ^c		-13.0 b
CH ₃ (CH ₂) ₂ NH ₂	60.29 ^d	57.18 ^d	57.76 ± 0.03	-10.5^{d} -8.5
CH ₃ (CH ₂) ₃ NH ₂	60.70^{d}	58.09 d 58.45 ± 0.12 e	58.51 ± 0.03	$-8.9 ^{d}$ -7.3
(CH ₃) ₂ CHNH ₂	60.47 f 60.64 g		58.24±0.07	-7.8 h
(CH ₃) ₃ CNH ₂	60.98 i	60.07 ⁱ	60.16±0.08	-3.1 i -2.8
HOCH ₂ (CH ₃) ₂ CNH ₂	55.32 ⁱ	53.93 i	54.10 ± 0.03	- 4.6 i - 4.1
(HOCH ₂) ₂ CH ₃ CNH ₂	50.24 j	49.86 ^j	49.91 ± 0.03	- 1.3 ⁱ - 1.1
(HOCH ₂) ₃ CNH ₂	46.07 ^d 46.06 ^p	47.60 ^d 47.40 ^p	47.48 ± 0.03	5.1 ^d 4.7
HOCH ₂ CH ₂ NH ₂	54.21 ^k 53.90 ^l	50.54 k 50.50 l 34.31 m		$-12.3 {}^{k}$ $-11.3 {}^{l}$
HOCH ₂ (CH ₂) ₂ NH ₂	56.82 °		$\begin{array}{c c} 50.50 \pm 0.04 \\ \hline \\ 53.13 \pm 0.04 \end{array}$	-11.9 * -12.3

^a Ref. 18; ^b Ref. 19, 30°C; ^c Ref. 23. Calorimetric determination, μ =0.03; ^d Ref. 6; ^e Ref. 4. Calorimetric determination, μ =0.2; ^f Ref. 20; ^g Ref. 24; ^h ΔS° value derived using the mean of the ΔG° values ^{20,24} ⁱ Ref. 7; ^f Ref. 8; ^k Ref. 21; ^l Ref. 9; ^m Ref. 23. Calorimetric determination, μ =0.015; ⁿ ΔS° value derived by use of the mean ΔG° values; ^{9,21} ^o Ref. 22. ^p Ref. 25.

alkyl substitution is known to make the ΔS_i value more negative, *i.e.* the soluted acid anion will lose entropy relative to that of the neutral molecule. For a dissociation process involving, *e.g.*, ammonium or thiazolium acids ¹²

$$(AH^+ \longrightarrow A + H^+)aq \tag{5}$$

Acta Chem. Scand. 22 (1968) No. 8

increased alkyl substitution will make the ΔS_i value less negative, *i.e.* the ionic form of the compound will also in this case lose entropy relative to that of the neutral molecule. For the straight chain alkyl ammonium compounds the increase in ΔS_i with increasing chain length will rapidly level off and it might be expected that ΔS_i will be constant after C_4 , as is the case for carboxylic acids. $t\text{-BuNH}_3^+$ has a slightly less negative ΔS_i value than BuNH_3^+ which is in line with observations made for carboxylic acids.¹⁰

Current molecular interpretations of these effects include the hypothesis by King and King ¹⁰ suggesting a solvent exclusion effect together with structure promotion in the disordered region outside the primary hydration shell of the ion. Another interpretation is offered by Ives and Marsden ¹³ who suggest that alkyl groups will promote hydration on the "watery" side of the ionic charge by field perturbation due to the exclusion of water and thereby change of dielectric constant.

For carboxylic acids and thiols, ¹¹ a hydroxyl group close to the acid group will increase the ΔS_i value, *i.e.* oppose the effect exerted by alkyl groups. This has been explained on the basis of a preferred orientation of water molecules already existing before the ionization and thus a reduction in the gross

orientation effect accompanying the charge generation.¹⁰

Substitution of a β hydrogen in EtNH₃⁺ and a γ hydrogen in PrNH₃⁺ with a hydroxyl group, has a small effect on the ΔS_i values. Comparison between ΔS_i values for t-BuNH₃⁺ and its hydroxy derivatives shows a small negative increment for the first hydroxyl group followed by slightly larger positive increments for the second and third groups.

For the present hydroxy ammonium compounds the picture is thus rather mixed and one might assume the existence of opposing effects which nearly

balance each other.

Enthalpy changes. The alkyl ammonium compounds have all very similar ΔG_i values and the difference in the $T\Delta S_i^{\dagger}$ terms are thus largely compensated

by corresponding differences in the enthalpy values.

Substitution in the β -position by a hydroxyl group causes a decrease in ΔH_i of about 6 kJ/mole both for the ethyl and the t-butyl compounds. A saturation effect is noted for additional substitution in the t-butyl group. A slight falling off effect (factor=1.3) is found when hydroxy substitutions in the β and γ positions are compared.

For carboxylic acids and thiols the effect of hydroxy substitution is near zero (HOCH₂COOH, CH₃COOH, 14 HOC₂H₄SH, C₂H₅SH 11) or will slightly increase the ΔH_1 value (several pairs of amino acids, 14 $\Delta \Delta H \approx 2.5$ kJ/mole). As for the ΔS i values it thus appears that, with regard to the effect of OH-substitution, several factors are at work and will contribute differently for

the different types of acids considered here.

The difference between the enthalpy values for the hydroxy substituted compounds and the alkyl compounds is demonstrated by Fig. 2, where ΔH_i values are plotted versus ΔS_i values. It is seen that an "isokinetic" line ¹⁵ with a β close to 298°C is found for the alkyl ammonium compounds whereas the hydroxy compounds fall below the line and do not show any linear relationship.

Fig. 2. ΔH_i versus ΔS_i for some ammonium compounds, RNH₃+.

The polar nature of the influence exerted by the hydroxyl groups is, for the present reactions, demonstrated by the linear relationship obtained when ΔG_i is plotted *versus* Taft's σ^* constants, ¹⁶ Fig. 3.

We may in this connection note that ΔG for a symmetrical proton transfer reaction like

$$RNH_3^+ + CH_3NH_2 \longrightarrow RNH_2 + CH_3NH_3^+$$
 (6)

can be equated with Hepler's "internal enthalpy change", $\Delta H_{\rm int}$.¹⁷ ($\Delta H_{\rm ext} = \beta \Delta S_{\rm ext}$; $\beta = T^{13}$). If ΔG for eqn. 6 is plotted versus σ^* , a line parallel to that in Fig. 3 is obtained and the polar effect of the hydroxyl groups may be identified with an "internal" enthalpy effect.

Fig. 3. ΔG_i versus σ^* for some ammonium compounds, RNH₃+. σ^* for R=alkyl groups taken as zero. Saturation effect for the hydroxymethyl groups according to Taft as quoted in Ref. 16: $\sigma^*(\text{CH}_2\text{OH})_3$: $\sigma^*(\text{CH}_2\text{OH})_2$: $\sigma^*(\text{CH}_2\text{OH})_3$: $\sigma^*(\text{CH}_$

REFERENCES

- 1. Irving, R. J. and Wadsö, I. Acta Chem. Scand. 18 (1964) 195.
- 2. Vogel, A. I. A text-book of Quantitative Inorganic Analysis including Elementary Instrumental Analysis, London 1961, p. 234.
 3. Sunner, S. and Wadsö, I. Acta Chem. Scand. 13 (1959) 97.
 4. Wadsö, I. Acta Chem. Scand. 16 (1962) 479.

- 5. Hale, J. D., Izatt, R. M. and Christensen, J. J. J. Phys. Chem. 67 (1963) 2605.
- Bates, R. G. and Hetzer, H. B. J. Phys. Chem. 65 (1961) 667.
 Hetzer, H. B., Robinson, R. A. and Bates, R. G. J. Phys. Chem. 66 (1962) 2696.
- 8. Hetzer, H. B. and Bates, R. G. J. Phys. Chem. 66 (1962) 308.
 9. Levi, D. L., McEwan, W. S. and Wolfenden, J. H. J. Chem. Soc. 1949 760.
 10. King, E. J. and King, G. W. J. Am. Chem. Soc. 78 (1956) 1089.
- 11. Irving, R. J., Nelander, L. and Wadsö, I. Acta Chem. Scand. 18 (1964) 769.
- 12. Goursot, P. and Wadsö, I. Acta Chem. Scand. 20 (1966) 1314.
- Ives, D. J. G. and Marsden, P. D. J. Chem. Soc. 1965 649.
 Christensen, J. J., Izatt, R. M. and Hansen, L. D. J. Am. Chem. Soc. 89 (1967) 213.
 Leffler, J. E. J. Org. Chem. 1966 533.
- 16. Ritchie, C. D. J. Phys. Chem. 65 (1961) 2091.
- 17. Hepler, L. G. J. Am. Chem. Soc. 85 (1963) 3089.
- 18. Everett, D. H. and Wynne-Jones, W. F. K. Proc. Roy. Soc. (London) A 177 (1941)
- 19. Evans, A. G. and Hamann, S. D. Trans. Faraday Soc. 47 (1951) 34.
- 20. Nell, J. E., Daubert, B. F. and Speier, J. L. J. Am. Chem. Soc. 73 (1951) 3871.
- 21. Bates, R. G. and Pinching, G. D. J. Res. Natl. Bur. Std. 46 (1951) 349.
- 22. Schwabe, K., Graichen, W. and Spiethoff, D. Z. Physik. Chem. (Frankfurt) 20 (1959)
- Popper, E., Roman, L. and Marcu, P. Talanta 14 (1967) 1163.
 Hall, N. F. and Sprinkle, M. R. J. Am. Chem. Soc. 54 (1932) 3469.
- 25. Datta, S. P., Grzybowski, A. K. and Weston, B. A. J. Chem. Soc. 1963 792.

Received March 27, 1968.