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The Crystal Structure of 8-Chloro-6,7-dihydro-3-methyl-
dipyridazino[2,3-a:4,3-d] pyrrole as Determined by the
Symbolic Addition Method

MOGENS STEEN LEHMANN and SVEND ERIK RASMUSSEN

Department of Inorganic Chemistry, University of Aarhus, Aarhus C, Denmark

The crystal structure of 8-chloro-6,7-dihydro-3-methyldipyrida-
zino[2,3-a:4,3-d]Jpyrrole, C,H,N,Cl, was determined using the
symbolic addition method. Automatically collected counter data
were used but the precision of the determination is low because the
crystal was subject to radiation damage. The structure was refined
by least squares methods using 1029 reflexions to an R-value of 13.4 %
The space group is P2,/c with a = 11.80 A, b = 6.95 A, ¢ = 26.3 4,
B = 106.4°, and eight C,;H,N,Cl molecules per unit cell. The two
mlolecules per asymimetric unit appear to be identical. They are nearly
planar.

In a paper on quaternisation reactions Lund and Gruhn?! described a com-
pound C,;(HgN,Cl to which they ascribed the formula:

(o}
C\c/ \C"C
ch\c/ \ / \
C—N c
N’ N d
~N N_—C\

The authors kindly supplied us with different preparations of their com-
pound for an X-ray structure determination. One sample was recrystallized
from benzene. It gave orthorhombic crystals. Another sample was recrystal-
lized from ethyl alcohol and gave monoclinic crystals. Some of the ortho-
rhombic crystals had a c-axis of 6.75 A, others showed a superstructure giving
a c-axis of 3 X 6.75 A. The intensities declined rapidly with sinf and no
further work was done on the orthorhombic compound.

A structure determination was carried out on the monoclinic form.
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1298 LEHMANN AND RASMUSSEN

EXPERIMENTAL

A batch of crystals supplied by Lund and Gruhn was purified by adsorption chromato-
graphy on Al,O, using chloroform as eluent. The purified compound was dissolved in
ethyl alcohol. Slow evaporation gave prismatic, needle shaped crystals. The needle axis
is b. (Found: C 55.2; H 4.53; N 24.5; 81 15.5. Cale.: C 54.4; H 4.11; N 25.4; Cl 16.1).

Lattice t; and space group extinctions were established from oscillation, Weissen-
berg, retigraph, and precession photographs. The photographs showed a large amount
of diffuse scattering. The high background around many of the Bragg reflexions made it
difficult to assess their intensities. An approximately cylindrically shaped ecrystal of
length 1 mm and diameter 0.15 mm was used for collecting intensities on a linear dif-
fractometer of the Arndt-Phillips * design. Mo-radiation was used. Balanced filters SrO,
ZrO, in conjunction with a scintillation counter and a pulse-height analyser simulated
a practically monochromatic MoK« beam. The intensities measured were symmetry
related in pairs. The crystal was subject to radiation damage. This effect and the high
amount of diffuse scattering had an adverse effect on the precision of the data.

The diffractometer data were reduced to relative structure factors using an ALGOL
program * which evaluated intensities, calculated averages over symmetlgr related re-
flexions, Lp-corrections, and standard deviations. 3500 independent reflexions were
measured. Only 1031 of these had an intensity greater than twice its standard deviation
estimated as the square root of the total number of counts in an intensity measurement.

STRUCTURE DETERMINATION

Unitary structure factors were calculated using the formula
U(hkl) = ¢-F(hkl)
where

9= é (il é FiPIKF (RkL)cale)

¢* was evaluated in suitable sinf intervals (Fig. 1).

Unitary and normalized structure factors were evaluated. The root mean
square value of the unitary structure factors is 0.1 and only 2.5 9, of the
U-values were greater than 0.4. Harker-Kasper inequalities were therefore
not likely to be useful.

Attempts to determine the structure using the X, and X, formulae of
Karle and Hauptmann 4 failed. The structure was finally determined using
the X, relation with the symbolic addition method of Karle and Karle.5

Table 1. Reflexions chosen for initiating sign determination.

hil s(hkl) (U (hET)|
3010 —1 0.60
125 —1 0.21
513 +1 0.21
104 a 0.48
1018 b 0.60
308 c 0.30

The initial set of signs and sign symbols are given in Table 1. A program
was written by M. S. Lehmann for computer application of the X, formula.
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Fig. 1. The coefficient ¢ as function of Fig. 2. Bounded projection based upon 320
sinf/A. ¢* is defined as signs obtained from the symbolic addition
method. Electron densities drawn at
arbitrary equal intervals.
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When 55 signs and sign symbols were established the symbol b was determined
as a negative sign and the rest of the signs were determined as positive or
negative or as 4 ac. Application of further sign determinations with ac given
a negative sign gave 390 sign indications. These signs led to a structure which
could not be refined. When ac = - was tried 320 signs were obtained. A

bounded Fourier projection based upon these signs is shown in Fig. 2. The

structure determined from this Fourier synthesis was readily refined. The

Fourier program used was written by Lauesen.®

Table 2.

Index & Number of signs Number of correctly
determined determined signs

0 114 96 ( 84 9%)

1 125 120 ( 96 %)

2 43 42 ( 98 %)

3 32 32 (100 %)

4 6 6 (100 %)

- - [¢)

total 320 296 ( 92.5 %)
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Table 2 shows the agreement between the signs obtained directly with
the signs calculated from the refined structure. The Fourier map which was
obtained using the 320 signs determined from the direct methods clearly
indicated two planar and similar molecules per asymmetric unit. Each mole-
cule showed one atom which was heavier than the rest. These heavier atoms
were inserted as chlorine in the structure factor computations and the remain-
ing atoms were inserted as carbon. Structure factors were calculated using
Danielsen’s D45 program.” After two cycles of Fourier and difference Fourier
refinement a conventional R-value of 25.7 %, was obtained. Refinement
continued using a least squares program D28 written by Danielsen.® This
program employs the diagonal approximation and isotropic temperature
factors. Convergence was reached at an R-value of 21.6 9.

According to chemical analysis eight atoms per asymmetric unit must
be nitrogen atoms. Seven of the thirty atoms involved in the refinement showed
temperature factors between one and two whereas the remaining temperature
factors were between three and six. The seven atoms with the lowest tempera-
ture factors were inserted as nitrogen atoms in further computations and a
new convergence was reached at B = 21.4 9.

Table 3. Geometric parameters as fractions of cell edges with 10* times their standard

deviations.
Atom x a(x) y a(y) 2z 6(2)
Cl(1a) 0.2201 ( 5) 0.3514 (12) 0.5803 (2)
N(la) 0.7608 (16) 0.2258 (42) 0.4974 (7)
N(2a) 0.6397 (16) 0.1972 (51) 0.4800 (9)
C(1a) 0.5881 (18) 0.1594 (40) 0.4306 9)
C(2a) 0.4514 (18) 0.1234 (68) 0.4159 (9)
C(3a) 0.6541 (19) 0.1196 (45) 0.3926 (8)
C(4a) 0.7705 (21) 0.1387 (65) 0.4075 (8)
C(5a) 0.8696 (22) 0.1337 (66) 0.3864 (9)
C(6a) 0.9722 (18) 0.1934 (39) 0.42556 (7)
C(7a) 0.1024 (18) 0.1798 (47) 0.4287 (8)
C(8a) 0.1733 (19) 0.2970 (63) 0.4711 (9)
C(9a) 0.1239 (19) 0.2856 (59) 0.5182 (8)
N(3a) 0.0200 (15) 0.2507 (33) 0.5211 (6)
N(4a) 0.9426 (14) 0.2161 (36) 0.4720 (6)
C(10a) 0.8189 (19) 0.1905 (64) 0.4616 (7)
Cl(2b) 0.1911 ( 4) 0.1060 = (12) 0.2974 (2)
N(1b) 0.7287 (13) 0.0483 (31) 0.2619 (6)
N(2b) 0.6120 (14) 0.0357 (31) 0.2574 (6)
C(1b) 0.5296 (17) 0.0485 (56) 0.2093 (8)
C(2b) 0.3991 (10) 0.0178 (42) 0.2094 (8)
C(3b) 0.5547 (18) 0.0895 (52) 0.1603 (9)
C(4b) 0.6760 (16) 0.1118 (50) 0.1655 (7)
C(5b) 0.7477 (17) 0.1557 (46) 0.1299 7)
C(6b) 0.8657 (17) 0.1431 (45) 0.1621 (7)
C(7b) 0.9806 (18) 0.2150 (49) 0.1487 (8)
C(8b) 0.0830 (17) 0.1077 (45) 0.1891 (8)
C(9b) 0.0652 (17) 0.1299 (40) 0.2426 (8)
N(3b) 0.9690 (14) 0.1178 (33) 0.2577 (6)
N(4b) 0.8706 (14) 0.1133 (45) 0.2125 (6)
C(10b) 0.7554 (17) 0.0765 (46) 0.2186 (8)
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The computations mentioned so far were carried out on a GIER computer
at Aarhus University. Further refinement was carried out on an IBM 7090
computer at NEUCC in Lundtofte. A ‘“full matrix’ least squares program
written by Gantzel, Sparks, Long and Trueblood ® was used. Anisotropic
temperature factors were used. With 30 atoms in the asymmetric unit it
gives 271 parameters. As the program can refine at most 171 parameters
those of one molecule were kept constant while those of the other molecule
were refined. After four cycles of refinement an R-value of 14.5 9, was obtained.
By examining a Fourier and a difference-Fourier synthesis calculated as
bounded projections, the eighth nitrogen atom was located.

After inserting this atom as nitrogen instead of as carbon additional refine-
ment gave an R-value of 13.7 9,. The reflexion (104) was apparently subject
to extinction and (100) was also observed too small. In this case the low set-
ting accuracy close to the axis of the diffractometer might also be the cause
of the discrepancy. Both reflexions were left out in the last refinements.

In the least squares computations the weights used were: W = 1/cF?
where gF'? was estimated from the counting statistics. The expression > W 4%/n
varied but little with the size of . 4 is the difference between observed and
calculated structure factors and n is the number of reflexions in a group of

Table 4. Anisotropic temperature factor parameters in A? X 10° with standard deviations.

Atom Uiy 6(Usi) Usa 0(Uss) Usy 0(Uss) Usz 0(Uys) Uss 6(Uys) Uss 6(Uy)
Cl(1a) 48 (3) 76 (7)) 45 (3) 5 (4—2 (3 —4 (5)
N(la) 53 (12) 128 (26) 37 (10) 9 (16) 3 (9 2 (17
N(2a) 32 (11) 192 (39) 78 (16) — 3 (18)— 8 (11) — 6 (22)
C(la) 46 (13) 28 (24) 61 (16) — 4 (15) — 3 (12) 27 (18)
C(2a) 34 (13) 179 (41) 71 (16) —34 (21) — 1 (12) 13 (26)
C(3a) 49 (13) 76 (26) 39 (12) —33 (18) —10 (10) —10 (19)
C(4a) 59 (17) 223 (49) 23 (11) 23 (27) — 3 (11) 12 (24)
C(5a) 72 (17) 143 (42) 48 (14) —61 (24) 0 (13) —36 (23)
C(6a) 55 (13) 52 (24) 27 (10) 32 (15) 19 (9)— 1 (15)
C(7a) 47 (13) 109 (33) 43 (12) —14 (18) 23 (10) — 6 (20)
C(8a) 47 (14) 150 (39) 55 (14) —40 (20) 32 (12) —32 (22)
C(9a) 36 (12) 198 (44) 35 (13) —12 (22) — 9 (10) 20 (22)
N(3a) 62 (12) 20 (17) 30 (9 13 (12 4 (8) 4 (11)
N(4a) 36 (10) 101 (24) 22 (9 4 (13) 2 (7 -—12 (14)
C(10a) 50 (13) 252 (50) 9 (9)—36 (25 4 (9 0 (22)
Cl(2b) 27 (2 100 (7)) 6565 (3) 9 (4 4 (2 8 (5)
N(1b) 25 (9) 56 (19) 34 (9) 11 (11) 6 (7)—3 (13)
N(2b) 40 (9) 50 (200 41 (10)—13 (1) 11 ( 8) 7 (12)
C(1b) 25 (10) 185 (43) 38 (12) —10 (19) 0 (9)—25 (22)
C(2b) 39 (11) 70 (26) 42 (12)— 2 (15 30 (10) 0 (16)
C(3b) 37 (12) 1283 (32) 63 (15)— 1 (18) 31 (11)— b . (22)
C(4b) 35 (11) 138 (34) 22 (9)—38 (19) 11 (9)—25 (19)
C(5b) 44 (11) 98 (29) 22 (10) 13 (17) 10 (9)— 586 (17
C(6b) 41 (11) 88 (27) 25 (10) 13 (16) 15 ( 9)—32 (18)
C(7b) 37 (12) 1156 (32) 49 (13) 18 (17) 17 (10) 6 (18)
C(8b) 40 (12) 81 (26) 43 (12) 0 (17) 17 (10) —12 (18)
C(9b) 31 (11) 45 (25) 48 (13)—11 (18)— 8 (9) 15 (17)
N(3b) 36 (10) 49 (18) 41 (10) 14 (12 2 (8 3 (13)
N(4b) 38 (10) 181 (31) 29 (9 33 (17) 10 (8 23 (17
C(10b) 36 (12) 97 (28) 27 (11) 11 (15)— 8 (9) 41 (17)

Acta Chem. Scand. 22 (1968) No. 4



1302 LEHMANN AND RASMUSSEN

Table 5. Interatomic distances, [, in A and angles, v, in degrees with standard deviations.

Atoms First molecule Second molecule

! o(l) l o(l)
N(1) —N(2) 1.38 (3) 1.35 (2)
N(2) —C(1) 1.30 (3) 1.36 (2)
C(1) —C(2) 1.57 (3) 1.55 (3)
C(1) —C(3) 1.45 (4) 1.43 (4)
C(3) —C(4) 1.32 (3) 1.40 (3)
C(4) —C(10) 1.42 (3) 1.47 (3)
C(4) —C(5) 1.42 (4) 1.45 (3)
C(5) —C(6) 1.41 3) 141 (3)
C(6) —N(4) 1.37 (3) 1.32 (3)
C(6) —C(7) 1.51 (3) 1.57 (3)
C(7) —C(8) 1.44 (4) 1.55 (3)
C(8) —C(9) 1.51 (4) 1.48 (3)
C(9) —Cl 1.76 (2) 1.76 (2)
C(9) —N(3) 1.27 (3) 1.30 (3)
N(3) —N(4) 1.37 2 1.41 (2
N(4) —C(10) 1.41 (3) 1.43 (3)
C(10) —N(1) 1.33 (3) 1.27 (3)

Angles

Atoms First molecule Second molecule

v a(v) v o(v)
N(1) —N(2) —C(1) 121 2) 122 (2)
N(2) —C(1) —C(2) 116 (2) 116 (2)
N(2) —C(1) —C(3) 122 (2) 125 (2)
C(2) —C(1) —C(3) 121 2 119 (2)
C(1) —C(3) —C(4) 119 (2 113 (2)
C(3) —C(4) —C(10) 115 (2 116 (2)
C(3) —C(4) —C(5) 141 2) 136 (2)
C(10) —C(4) —C(5) 105 (2) 108 (2)
C(4) —C(5) —C(6) 110 2) 105 2
C(5) —C(6) —N(4) 108 2) 112 (2)
C(5) —C(6) —C(7) 132 (2) 128 (2)
N(4) —C(8) —C(T) 118 (2) 118 (2
C(5) —C(7) —C(8) 112 2) 104 (2)
C(7) —C(8) —C(9) 109 2) 108 (2)
C(8) —C(9) —Cl 117 (2) 117 (2
C(8) —C(9) —N(3) 131 2) 130 (2)
Cl —C(9) —N(3) 112 (2) 110 (2
C(9) —N(3) —N(4) 112 (2 109 (2
N(3) —N(4) —C(6) 126 (2) 129 (2)
N(3) —N(4) —C(10) 125 2 120 (2)
C(6) —N(4) —C(10) 108 2 111 (2)
N(4) —C(10) —C(4) 109 2) 104 (2)
N(4) —C(10) —N(1) 123 (2) 127 (2)
C(4) —C(10) —N(1) 128 2 128 (2)
C(10) —N(1) N(2) 115 2) 115 2)
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Table 6. Observed and calculated structure factors.
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1304 LEHMANN AND RASMUSSEN

structure factors in a given range. The weight analysis was computed using
a structure factor and least squares program written by R. Grenbzk Hazell.10

A final refinement and a computation of bond distances efc. was carried
out using the programs ORFLS ! and ORFFE 12 written by Busing, Martin
and Levy. The final R-value was 13.37 9, using 1029 reflexions.

The bond distances were also computed on GIER using a program written
by Nyborg and Danielsen.’® This program computes standard deviations of
bond lengths using only a diagonal approximation whereas ORFFE uses the
full variance-covariance expression. The two sets of standard deviations are
hardly different.

CRYSTAL DATA

Crystal system: monoclinic, a = 11.80 A, b =6.95 A, ¢=26.3 A,
B = 106.4°, space group P2,/c (No. 14). Density measured: 1.46, g/cm?, calec.
1.44 g/cm3. 8.16 C,oH,N,Cl units per unit cell.

The coordinates and their estimated standard deviations are given in
Table 3. Thermal parameters are given in Table 4 and interatomic distances
in Table 5. Table 6 gives observed and calculated structure factors. The
atomic scattering factors used were taken from International Tables, Vol. III.

DISCUSSION

From our point of view the main result of this paper is the demonstration
that the symbolic addition method was successful in dealing with a structure
containing 120 atoms per unit cell even using rather inaccurately measured
structure amplitudes. We have looked at the Patterson function of the struc-
ture afterwards and found that the Harker sections were obscured by non-
Harker peaks to such an extent that it would have been difficult to locate
even the chlorine atoms by the usual Patterson approach. The occurrence
of two identical molecules per asymmetric unit in an almost parallel arrange-
ment also contributes to making the Patterson approach a difficult one. We
believe that we could not have determined the structure from the Patterson
function within a reasonable time.

The occurrence of two crystallographically independent molecules per
asymmetric unit raises the question: are these molecules identical? A complete
statistical analysis of this problem represents a large mathematical problem.
We have therefore made the following very simple and not exact analysis:
We consider two corresponding bond lengths z; and z, to differ significantly
only if

|2, —25| 2> 1.96 0 (,—2,)

A Gaussian error distribution is assumed since the bond lengths are determined
from over a 1000 reflexions. Only for C(7)—C(8) is |x;—x,| > 1.960 (2.20).
At this 5 9, significance level one might expect one out of seventeen tests
to fail.

A multiple comparison test may be based upon the following considera-
tions:
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The differences between two corresponding bond lengths z,—x, = 4, are
supposed to belong to a set of mean values with the common value zero.
We can form a multitude of contrasts based upon the 4;’s, e.g. the sum

Z a4, equals 0.69 A with |g| = 1 and Ja, = 0. Using the stand-

ard devmtlons obtained from the least squares computations the estimated
standard deviation of 6, is found as 0.16 A. We assume that the individual
4; is based upon a practically infinite number of degrees of freedom and we
obtain the 95 9, confidence interval for this contrast:

om_Saem < om < em + SGOm

where S2 = y15,2 as 0.69—0.80 < 6, < 0.69 - 0.80. Any other contrast
will also fall within a confidence interval including zero.

We cannot therefore reject the hypothesis that all the bond lengths are
equal on the 5 9, significance level.

Table 7. Distances 6 of atoms from least squares planes with standard deviations. The
numbers are 10* X

Atom First molecule Second molecule
J o(d) é a(d)
N(1) 1 3 0 2
N(2) -1 3 — 4 2
c(1) 7 3 2 4
C(3) - 2 3 2 3
C(4) — 5 4 -1 3
C(5) — 2 4 — 4 3
C(6) 9 3 3 3
N#4) - 2 2 — 2 3
R o ¢
C(2) 0 4 7 3
C(7) —10 3 —25 3
C(8) 38 4 40 3
C(9) 6 4 -5 3
N(3) —13 2 —16 2

Fig. 3. Projection of molecule giving distances averaged over two independent molecules.

Acta Chem. Scand. 22 (1968) No. 4

-



1306 LEHMANN AND RASMUSSEN

This does not prove that our hypothesis about the equality of the two
molecules is correct. Alternative hypotheses are also consistent with this
result. The two molecules might be isomers, e.g. conformational ones. A multiple
comparison test based upon the valency angles is, however, also consistent
with the hypothesis that the molecules are equal.

Least squares planes were calculated for the two molecules. The result
is shown in Table 7. It is seen that the planarity and deviations from planarity
correspond closely for the two molecules.

The combined evidence makes it likely that the two independent mole-
cules are equivalent and a molecule with mean distances is depicted in Fig. 3.

We have confirmed the formula given by Lund and Gruhn. The bond
lengths and the planarity indicate that the six-membered ring carrying the
methyl group and the five-membered ring are of aromatic character. The
bonds from C(7) and C(8) are single bonds. Application of usual valence rules
leads to the following assignments of hydrogen atoms: C(2): three H (methyl
group), C(3) one H, C(5) one H, C(7) two H, C (8) two H. This corresponds
to the assignments made by Lund and Gruhn from chemical considerations
and from NMR spectra. Because of the inaccuracy of the X-ray data it was
not possible to confirm the location of the hydrogen atoms from Fourier
difference maps.
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