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Chemical Equilibrium and Linear Programming

ERIK SYLVEST JOHANSEN

The Royal Danish School of Pharmacy, Copenhagen, Denmark

Using a simple description based on mathematical programming,
a new algorithm for the determination of the equilibrium composi-
tion of a complex mixture is proposed. The method, which is based
on linear programming, leads to small and fast working computer
programs even if the equilibrium composition involves simultaneously
high and extremely low concentrations.

The problem of calculating equilibrium concentrations of chemical systems
is of considerable interest in many situations. A chemical system is com-
pletely determined by the primary parameters: a number of equilibrium con-
stants or formation energies and some linear functions of the concentrations
relating these to the composition of the system, ¢.e. mass balance equations.

Traditionally the object of solving this equilibrium problem has been
attacked by means of the mass action law with the intention of giving explicit
expressions for the concentrations as functions of the primary parameters.
Because of the mathematical difficulties, this will only succeed for very simple
systems and it is usually necessary to apply approximations. This has led to
a variety of formulas to be used in specific cases. A rather systematic treatment
along this line has been given by Charlot and Gaugin.! The reactions are
classified according to complexity and mass balance. A specific class of reac-
tions is then subdivided according to the magnitude of the equilibrium constant
into subclasses characterized as: reactions that are practically not taking
place, practically quantitative reactions, and the ‘‘intermediate’ case, which
is the general case. The practically quantitative reactions are then treated
according to the composition of the system, ¢.e. if the mass balance corresponds
to equivalent amounts or not.

Now, this variety of formulas and cases was generated by the efforts for
making explicit expressions. That the chemical equilibrium problem is implicit
in nature is illustrated by the thermodynamic formulation of the equilibrium
condition, namely that the free energy function shall attain a minimum.

Algorithms for solving the implicitly formulated problem has been proposed
by several authors, Anthony and Himmelblau 2 and the references contained
therein and Warga.? In spite of this further work has been done and it is
believed that something has been gained in efficiency, speed and simplicity.
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DESCRIPTION OF THE CHEMICAL EQUILIBRIUM MODEL

We will consider a chemical system containing m different species X,
j€J = {1,2,....,m}. Species of the same composition but appearing in different
phases will be regarded as representing different species. Let these m species
be described in terms of » fundamental building blocks which can be atomic
elements or more complex structures. Let these fundamental species be taken
as the first n species, t.e. X,, €] = {1,2,....,n} € J; in other words, I is a
subset of J including the possibility I = J. But, if 7 = J no reactions take
place in the system.

As an example let us consider an aqueous mixture of H*, NH,, PO,%,
and some non-reacting ions for the sake of electroneutrality. Neglecting
solvolysis the following products can be included in the system, NH,*, HPO,2"
H,PO, ", and Hy;PO,. Thus we have n = 3 and m = 7. The products are
formed according to a number of “‘equations’ such as

H,PO,” = 2H* + PO3
with a corresponding mass action expression
’ [H,PO,”] = AHTP[POS]

The number of moles and the concentration in moles per litre of X; will
be denoted x; and c;, respectively. For a reaction generally written as -

X, & >a;X, j€J (1)
we can write el
¢ = ﬁ,’ g (c;)%i (2)

where the a;’s are stoichiometric coefficients and the pg;’s are formation
constants. Let d, be the total number of moles of X, in the system, i.e. the
analytical amounts of the fundamental building blocks. Then the mass balance
equations are
d=3a; Xz (€1 (3)
In matrix notation ieJ
d=Ax (3a)
Since ¢; = z;/V we also have
d=TVAc (3b)

V is the volume of the system, A is an n X m matrix with elements aij, X,
¢ and d are column vectors with elements ;, ¢; and d,, respectively. For j < n
we have f; = 1 and a;; = J;; where J;; is the kronecker delta.

In the above mentioned example one of the mass balance equations will be
1.[H*] +0-[NHg] + 0-[PO 7] + 1-[NH,*] + 1.[HPO] + 2-[H,PO,"]
+ 3 . [HgPO,] = the analytical amount of hydrogen ion.

The matrix A will then be as follows
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Now, a vector ¢’ satisfying the mass balance equations will represent an
equilibrium composition if it also satisfies the mass action laws (2) or mini-
mizes the free energy function of the system.

In case of a system under constant pressure and temperature equilibrium
is attained when the Gibbs free energy is minimum

Min {G|AX = d,x > 0} 4)

This formulation has been carefully investigated by Shapiro and Shapley 4
who proved that G is a convex function and that (4) under certain circum-
stances defines a unique solution that will satisfy (2) and (3).

Let the m-dimensional vector ¢ be described in the real m-dimensional
Euclidean space E” and let this space be decomposed into two disjoint
subspaces §; and S, so that §; is the n-dimensional space spanned by the
row vectors of A and S, is the complement to 5.

The decomposition of an arbitrary vector into components in §, and S,
can be performed by means of the projection matrices P, and P,.

For any vector satisfying (3a) we have

APx=dand APx =0

Now, the only possibility for minimizing G without destroying mass balance
lies in movements along directions that lie entirely in §,.
Then another way of expressing the equilibrium conditions is

Pu—=0 Ax=d

where p is the gradient vector of G. Pyu = O is equivalent to the familar
expression 4G = 0.

P, and P, can be calculated ® according to
P, = AT(AAT)A and P, = [P,

where T denotes transposition and I is the m-dimensional unit matrix.

This implies that no concentration equals zero, in which case (3a) must
also include suitable constraints in order to avoid negative concentrations.
If the chemical system involves pure phases that might vanish, this can be
the case, but, otherwise the infinite chemical potential for a zero concentration
will force the solution to (4) to contain only non-zero concentrations.

THE ALGORITHM

The Gibbs free energy function of the system is given by

i€J ieJ
where g, equals the energy of formation of species j.

So far the exposition is nearly identical to that of White, Johnson and
Dantzig,® who solve the problem by minimizing (5) applying linear program-
ming. The non-linear terms are substituted by a piecewise linear approximation.
This method requires repeated calling of the linear programming procedure
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and the linear constraints constitute an (n + 2m) X 4m matrix. Both features
imply long computation times.

In the interval 0 < x; < 1 the contribution to the free energy from terms
like x; X In ¢; will by far be exceeded by the contribution from the linear
terms. An approximation to the free energy function will then be

ieJ

and the problem is reduced to linear programming
Min {g™n|AXx = d, x > 0} (6)

This problem can generally be solved by library procedures.

Working out from the solution to (6) it turns out to be easy to reinclude
the non-linear terms and obtain the solution to (5). This is so because emphasis
is first given to species which are present in greater amounts.

The theory and application of linear programming is described by many
authors, for example by Zoutendijk,” and we will only mention some important
features here.

The matrix A is n X m with n < m and a solution to (6) will contain
(at most) » non-zero concentrations. The column vectors of A corresponding
to these species constitute a square n X » matrix B, called the basis and
the corresponding set of indices is denoted L, L c J.

When using a simplex method for solving (6) one obtains besides the solu-
tion the inverse of the matrix B. When writing the non-zero concentrations
as an n-dimensional vector X, the relation between this vector and d is simply

Xy =B (7)
By means of (2) and the relation In g, = —g,/RT we can write
In ¢,= —g/RT + > bjlnc, 1E€EL (8)
el

and since B™ is known we can easily solve for In ¢, : € I. Now all the zero
concentrations of the solution to (6) can be adjusted to the values they must
have for being in equilibrium with ¢,. This operation will destroy mass balance,
but it turns out that in many cases the difference is small or even negligible.
We have now calculated an exact solution, not that belonging to the original
vector d, but to an adjacent vector d*. If the difference is too great to be
ignored we adjust X, in the following way

X, = X,—B1 (d*—d) (9)

for the purpose of “making room” for the difference. If the difference is small
this will give the desired solution in one step.

DISCUSSION
The principles of iteration utilized in the algorithms cited can be divided
into three classes:
1) mass balance satisfied all the time, while equilibrium is sought by
iteration
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2) equilibrium conditions fulfilled, while mass balance is sought by itera-
tion.

3) both mass balance and equilibrium are sought by iteration.

The present method is particular in that it includes features from all three
classes. Actually both mass balance and equilibrium are sought by iteration,
but the steps in the iteration oscillate between states where either mass
balance or equilibrium conditions are in focus.

The work with the algorithm was initiated by a need for simulating equilibria
in aqueous solutions. Most of the algorithms cited were intended for the
determination of gas equilibria and it was recognized that inclusion of extremely
low concentrations had an adverse effect on convergence. Anthony and
Himmelblau 2 experimented with an algorithm based on a search technique 8
and the third principle of iteration and found that when the ratio between
the highest and the lowest concentration became of the order 104 to 10° numer-
ical difficulties arose. They believed that this would be the case for any other
procedure. It is believed that the success of the present method is due to two
features, namely

1) the description on the basis of just n significant concentrations of
the same order of magnitude.

2) the oscillation between the two complementary iteration principles.

The first point assures that the reported numerical difficulties don’t come
into operation and the second point is responsible for the fast convergence.
No proof for convergence will be given here, since the ability of a numerical
method necessarily must be demonstrated by experiment. But empirically
the power of the method has been proved on several chemical systems with
various dimensions of A and with various values of the formation energies.
Its power is also demonstrated by the fact that the above mentioned ‘‘oscilla-
tion”’ often consists of just one step. Yet, if the first approximation is poor
several cycles are needed.

The algorithm as described above has also some severe limitations, but as
the iteration is the simplest possible there seems to be plenty of possibilities
for incorporating more sophisticated strategies.

It has been implied that the solution to (6) was not degenerate, i.e. that
it contained » non-zero concentrations. This is not always true and the degen-
eracy will leave one or more of the elements In ¢, i € I indeterminate and
consequently one or more elements of d* will be indeterminate. This can be
met with in several ways, an obvious possibility is to perturb d in such a
manner that the degeneracy is avoided and then by the subsequent itera-
tion return to the initial vector d. Another possibility is to determine the
lacking elements by a nesting procedure trying to minimize the distance be-
tween d* and d.

This leads to the other observed inadequacy of the simple procedure.
It can happen that the solution to (6) is a poor approximation to equilibrium
composition. This can be the case if some of the equilibrium constants are
of the same order of magnitude or when A contains negative elements. The
last thing will occur if solvolysis is taking place in the system.

When the approximation is poor the distance between d* and d becomes
so great that the adjustment (9) is no improvement at all or even leads to
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negative mass balance. Also here a nesting procedure using d—d* as the
direction of iteration can prove useful.

But the simple procedure has proved quite adequate in a large number
of cases.

The use of mole fractions or activities will imply additional iterations,
but since both, like the free energy, are dependent on the large concentrations
-only, this will not offer any great difficulty.

The phosphate-ammonia system has been treated by a provisional ALGOL
program on a GIER computer with an average execution time for an arithmet-
ical operation of 0.2 milliseconds and approximate computing times of 1.5 sec
per point were obtained. Solvolysis was neglected and consequently the matrix
A contained no negative elements. If solvolysis is included the hydroxide ion
is also taken in consideration. This case can be dealt with in two ways. The
concentration of OH™ can be considered a negative hydrogen ion concentration.
This seems to be most convenient if the water concentration can be taken as
constant, but it leads to a negative element in A, » = 3 and m = 8. Otherwise
‘the concentration of water can be introduced, » = 4 and m = 8, but both
procedures makes it possible that the first approximation supplied by the
linear programming procedure is a poor approximation. The possibility for
making an efficient procedure that will handle this case has not yet been
investigated by the present author. In the above calculations activity factors
were considered constant. If this is not feasible the variation of the ionic
‘strength must be taken in account. One possibility is to calculate the ionic
strength every time an approximate equilibrium composition has been esti-
mated. Activity factors as functions of the ionic strength can then be included
in the next step of iteration. Such a procedure has proved convergent in the
‘phosphate-ammonia system with about ten times longer computing times.
No efforts for optimizing the procedure has been made.

APPENDIX

As an example of the use of the method we can choose acetic acid. This
'will also demonstrate that even very simple systems can be treated with
advantage by the algorithm. For the sake of simplicity we will only consider
solutions in which we can ignore the concentration of OH™. The system is
then composed of H*, Ac™, and HAc. Then we have

A= (i), g = ) () ={§A]1]} e ={3_1n p}

Instead of formation energies negative logarithms to the formation constants
are inserted in the g vector. This can be done since only the relative order
of magnitudes of the elements of g are of importance to the linear programming
procedure.

Traditionally this system can be treated as follows

[H*] X [Ac™] X B = [HAc]
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and introducing mass balance
(d,—[HAc])(d;—[HAc]) X B = [HAc]
[HACP—(d; + dy + f)[HAC] + dydy = 0

Apart from the small perturbation, g7, the equation is seen to possess two
positive roots, namely d, and d, and we are forced to choose between the
two values and this is actually done by a process equivalent to linear pro-
gramming.

Solving (6) linear programming will give us the first approximation.
In this case the maximum amount of acetic acid will be formed. For d, = 0.1 M
and 0.001 < d; < 0.09 a maximum relative error in mass balance of 0.2 9,
was obtained when the zero concentrations of the initial solution were adjusted
to equilibrium values. Applying the refining (9) once gave a solution well
inside experimental uncertainties. For equivalent amounts of H+ and Ac™
the above mentioned degeneracy became operative, i.e. the solution to (6)
contained only one non-zero concentration.
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