Phase Analysis Studies on the NaNbO₃-Nb₂O₅, NaF-Nb₂O₅, and NaNbO₃-Nb₂O₅-H₂O Systems ### STEN ANDERSSON Research Institute of National Defence, Dept. 4, Stockholm 80, Sweden NaNb₃O₈ and NaNb₁₃O₃₃ were prepared at $1100-1200^{\circ}\mathrm{C}$ in the system NaNbO₃-Nb₂O₅. Na₂Nb₂O₅F₂, NaNb₂O₅F, and NaNb₅O₁₅F were found in the NaF-Nb₂O₅ system at $800-1000^{\circ}\mathrm{C}$. Na₂Nb₄O₁₁ and NaNb₆O₁₅(OH) were identified in the NaNbO₃-Nb₂O₅-H₂O system at $500-700^{\circ}\mathrm{C}$ and 2000 atm. $H-Nb_2O_5$ was transformed to $N-Nb_2O_5$ in supercritical water at $900^{\circ}\mathrm{C}$ and 2000 atm. Indexed powder patterns are given. The substitution of F⁻ for O²⁻ in pentavalent niobium oxide has been shown to occur through the synthesis and crystal structure determination of a number of new compounds, viz. Nb₃O₇F, Nb₅O₁₂F, Nb₁₇O₄₂F, and Nb₃₁O₇₇F.¹⁻³ In order to learn to which extent F⁻ and also OH⁻ can substitute for O²⁻ in ternary pentavalent niobium oxides, systematic phase analyses of the systems NaNbO₃—Nb₂O₅—H₂O and NaF—Nb₂O₅ were carried out. Phase studies on the dry system NaNbO₃—Nb₂O₅ were also performed for comparison. ## **EXPERIMENTAL** The system $\mathrm{NaNbO_3-Nb_2O_5}$ was studied in a way described earlier. Preparations with water in the system were carried out in Nimonic 115 vessels. The samples were kept in sealed platinum or gold capsules, which had been cleaned with boiling concentrated nitric acid. 50-100 mg of the oxides were mixed with 10-30 mg of water. The pressure was controlled with a needle valve and a high pressure gauge. The temperatures used varied between 500 and $900^{\circ}\mathrm{C}$ and the pressure normally applied was 2000 atm. The heating time was usually 3-6 days. The $\mathrm{NaF-Nb_2O_5}$ system was studied by heating mixtures of NaF and $\mathrm{Nb_2O_5}$ in sealed platinum capsules at temperatures between 800 and $1000^{\circ}\mathrm{C}$ for 1-3 days. The samples were examined by X-ray powder photographs obtained with a Guinier focusing camera of 80 mm diameter, using monochromatized $\mathrm{Cu}K\alpha$ radiation. Single crystal photographs were taken of all the compounds reported here. The powder patterns given below were indexed with the guidance of the single crystal data. ## RESULTS OF THE PHASE ANALYSES In the dry system, NaNbO₃—Nb₂O₅, investigated at 1100—1200°C, only two phases were found, viz. NaNb₃O₈ and NaNb₁₃O₃₃. The structure of the NaNb₃O₈ phase ⁵ has some similarities with that of the tetragonal potassium tungsten bronze compound.⁶ The b-axis of NaNb₃O₈ (37.10 Å) corresponds to a three doubling of one of the tetragonal axes. The detailed structure of the NaNb₁₃O₃₃ compound has been reported earlier.⁴ The indexed Guinier X-ray powder patterns of the two oxides NaNb₃O₈ and NaNb₁₃O₃₃ are given in Tables 1 and 2. NaNb₃O₈ and NaNb₁₃O₃₃ were not formed in the system NaNbO₃—Nb₂O₅—H₂O. Instead two different compounds were identified, viz. Na₂Nb₄O₁₁ and NaNb₆O₁₅OH. The composition Na₂Nb₄O₁₁ was derived from the starting composition, from the observed density and also from a preliminary structure determination.⁷ Wether OH⁻ actually substitutes for O²⁻ in Na₂Nb₄O₁₁, to give a composition Na_{2-x}Nb₄O_{11-x}(OH)_x, has not been investigated. However, the good agreement between the observed and calculated densities indicates that x should be rather small, if any such substitution had occurred. The composition of the second compound, NaNb₆O₁₅OH, was derived by the structure extermination of the isomorphous NaNb₆O₁₅F.⁸ NaNb₆O₁₅OH coexisted with H—Nb₂O₅ at intermediate compositions at 500—700°C. At temperatures above 850°C, H—Nb₂O₅ transformed into N—Nb₂O₅ in the presence of a Table 1. Guinier powder data of NaNb₃O₈. Table 2. Guinier powder data of NaNb₁₃O₃₃. | \cdot I | $\sin^2\!\theta_{ m obs}$ | hkl | $\sin^2\!\theta_{ m calc}$ | I | $\sin^2\!\theta_{ m obs}$ | hkl | $\sin^2\! heta_{ m calc}$ | |------------------------|---------------------------|-------------------|--|-----|---------------------------|------------------|---------------------------| | vw | 0.00426 | 110 | 0.00431 | w | 0.00476 | 200 | 0.00473 | | w | 0.00559 | 120 | 0.00560 | vw | 0.00710 | $20\overline{1}$ | 0.00707 | | vw | 0.00692 | 040 | 0.00690 | vw | 0.00744 | 201 | 0.00742 | | vw | 0.01074 | 140 | 0.01077 | w | 0.01520 | 202 | 0.01514 | | vw | 0.01464 | 150 | 0.01465 | vvw | 0.01895 | 400 | 0.01893 | | vw | 0.01587 | 210 | 0.01594 | st | 0.02110 | $40\overline{1}$ | 0.02109 | | | | (230 | (0.01938) | m | 0.02790 | 203 | 0.02789 | | \mathbf{w} | 0.01939 | 160 | 0.01939 | vst | 0.04159 | 110 | 0.04155 | | vw | 0.02234 | `240 | 0.02240 | w | 0.04397 | 111 | 0.04397 | | w | 0.03101 | 260 | 0.03102 | vst | 0.04565 | 204 | 0.04566 | | vw | 0.03519 | 310 | 0.03531 | vst | 0.05157 | $60\overline{2}$ | 0.05158 | | | 0.000 | (320 | (0.03660) | w | 0.05322 | $31\overline{1}$ | 0.05327 | | $\mathbf{v}\mathbf{w}$ | 0.03657 | 270 | 0.03662 | vw | 0.05367 | 311 | 0.05377 | | \mathbf{vst} | 0.03794 | `001 | 0.03794 | w | 0.06160 | 312 | 0.06159 | | | 0.000#0 | (330 | (0.03876) | w | 0.06672 | $20\overline{5}$ | 0.06670 | | w | 0.03876 | 1190 | 0.03879 | vw | 0.06988 | 510 | 0.06993 | | w | 0.04315 | 0 10 0 | 0.04310 | m | 0.07194 | 51Ī | 0.07203 | | vw | 0.04353 | 121 | 0.04354 | m | 0.07438 | 313 | 0.07443 | | $\mathbf{v}\mathbf{w}$ | 0.04477 | 041 | 0.04484 | st | 0.16145 | 020 | 0.16144 | | vw | 0.04560 | 350 | 0.04566 | | | | | | | 0.05090 | (360) | (0.05040) | | | | | | \mathbf{st} . | 0.05039 | 290 | 0.05041 | | | | | | vvw | 0.05389 | `211 | 0.05388 | | | | | | vvw | 0.05609 | 1,11,0 | 0.05603 | | | | | | v | 0.05728 | ${231 \atop 161}$ | $\begin{cases} 0.05732 \\ 0.05733 \end{cases}$ | | | | | few weight percent water. The crystal structure of N-Nb₂O₅ has recently been determined.9 The indexed X-ray Guinier powder patterns of Na₂Nb₄O₁₁, NaNb₆O₁₅OH, and N-Nb₂O₅ are given in Tables 3, 4, and 5. Table 3. Guinier powder data of Na₂Nb₄O₁₁. Table 4. Guinier powder data of NaNb,O15OH. | I | $\sin^2\! heta_{ m obs}$ | hkl | $\sin^2\! heta_{ m calc}$ | I | $\sin^2\! heta_{ m obs}$ | hkl | $\sin^2\! heta_{ m calc}$ | |----------------|--------------------------|------------------|---------------------------|-----|--------------------------|-----|---------------------------| | \mathbf{st} | 0.01590 | 002 | 0.01585 | w | 0.00849 | 011 | 0.00844 | | \mathbf{m} | 0.02185 | 200 | 0.02191 | vvw | 0.02283 | 020 | 0.02287 | | \mathbf{st} | 0.02242 | 111 | 0.02246 | w | 0.03030 | 013 | 0.03025 | | w | 0.02732 | $20\overline{2}$ | 0.02734 | vst | 0.03794 | 100 | 0.03792 | | w | 0.02761 | 111 | 0.02767 | m | 0.04369 | 004 | 0.04362 | | w | 0.04811 | 202 | 0.04817 | w | 0.04631 | 111 | 0.04636 | | w | 0.04895 | $11\overline{3}$ | 0.04895 | vvw | 0.04889 | 102 | 0.04882 | | vst | 0.06339 | 004 | 0.06339 | st | 0.05418 | 031 | 0.05419 | | | | (310 | (0.06492 | vvw | 0.06067 | 120 | 0.06079 | | \mathbf{vst} | 0.06520 | $31\overline{2}$ | 0.06515 | st | 0.06653 | 024 | 0.06649 | | \mathbf{st} | 0.06647 | 021 | 0.06647 | w | 0.06810 | 113 | 0.06817 | | \mathbf{st} | 0.07670 | 311 | 0.07669 | vvw | 0.07161 | 122 | 0.07169 | | m | 0.07716 | $31\overline{3}$ | 0.07715 | m | 0.07382 | 015 | 0.07387 | | \mathbf{st} | 0.07837 | 022 | 0.07836 | m | 0.07590 | 033 | 0.07599 | | vw | 0.08983 | $22\overline{2}$ | 0.08985 | m | 0.08165 | 104 | 0.08154 | | w | 0.09627 | 312 | 0.09637 | st | 0.09199 | 131 | 0.09211 | | vw | 0.09708 | $31\overline{4}$ | 0.09708 | m | 0.10450 | 124 | 0.10443 | | w | 0.09812 | 023 | 0.09816 | 111 | 0.2020 | | | Table 5. Guinier powder data of $N-Nb_2O_5$. | I | ${ m sin}^2 heta_{ m obs}$ | hkl | $\sin^2\! heta_{ m calc}$ | |------------------------|----------------------------|--------------------|---------------------------| | w | 0.00292 | 001 | 0.00288 | | w | 0.00315 | $20\overline{1}$ | 0.00318 | | w | 0.01147 | 002 | 0.01151 | | w | 0.01213 | $40\overline{1}$ | 0.01214 | | vw | 0.01274 | f 40ar 2 | 0.01274 | | \mathbf{m} | 0.02585 | 003 | 0.02591 | | m | 0.02633 | f 60ar 2 | 0.02631 | | $_{\cdot}\mathbf{vst}$ | 0.04156 | 110 | 0.04154 | | \mathbf{m} | 0.04234 | $11\overline{1}$ | 0.04241 | | \mathbf{vst} | 0.04607 | 004 | 0.04606 | | | | t111 | (0.04644) | | vvst_ | 0.04676 | $\{80\overline{3}$ | $\{0.04683$ | | | | (31 1 | (0.04704 | | \mathbf{w} | 0.04852 | $80\overline{2}$ | 0.04856 | | vw | 0.05069 | $80\overline{4}$ | 0.05086 | | vw | 0.05423 | 601 | 0.05393 | | w | 0.05710 | 112 | 0.05709 | | w | 0.05883 | $51\overline{2}$ | 0.05889 | | vw | 0.06130 | $11\overline{3}$ | 0.06141 | | vw | 0.06996 | $60\overline{6}$ | 0.07007 | | w | 0.07200 | 005 | 0.07198 | | | | (113 | (0.07350) | | \mathbf{m} | 0.07353 | $100\overline{4}$ | $\{0.07371$ | | | | $100\overline{3}$ | 0.07371 | | st | 0.07680 | $80\overline{6}$ | (0.07620 | | នប | 0.07080 | $71\overline{2}$ | 0.07681 | Acta Chem. Scand. 21 (1967) No. 7 In the $NaF-Nb_2O_5$ system three compounds were identified, viz. $Na_2Na_2O_5F_2$, $NaNb_2O_5F$, and $NaNb_6O_{15}F$. The compositions given here were deduced from structural considerations and also from density measurements. The X-ray data of $Na_2Nb_2O_5F_2$ had strong subcell features, the substructure being of the pyrochlore structure type. The unit cell given in Table 9 is ob- Table 6. Guinier powder data of Na₂Nb₂O₅F₂. | I | $\sin^2\! heta_{ m obs}$ | I | $\sin^2\! heta_{ m obs}$ | |--------------|--------------------------|----------------|--------------------------| | st | 0.01408 | vw | 0.05001 | | \mathbf{m} | 0.01617 | \mathbf{m} | 0.05883 | | \mathbf{m} | 0.02134 | \mathbf{vst} | 0.06418 | | vw | 0.03025 | vw | 0.06452 | | w | 0.04264 | vvw | 0.07135 | | vw | 0.04469 | \mathbf{m} | 0.08555 | Table 7. Guinier powder data of NaNb₂O₅F. Table 8. Guinier powder data of NaNb₈O₁₅F. | | | _ | | | | | | |----------------|--------------------------|-----|---------------------------|--------------|--------------------------|------------|---------------------------| | I | $\sin^2\! heta_{ m obs}$ | hkl | $\sin^2\! heta_{ m calc}$ | I | $\sin^2\! heta_{ m obs}$ | hkl | $\sin^2\! heta_{ m calc}$ | | vw | 0.00780 | 110 | 0.00777 | w | 0.00844 | 011 | 0.00845 | | w | 0.01944 | 210 | 0.01944 | vvw | 0.02283 | 020 | 0.02284 | | \mathbf{w} | 0.03112 | 220 | 0.03110 | w | 0.03036 | 013 | 0.03035 | | \mathbf{vst} | 0.03821 | 001 | 0.03817 | vst | 0.03804 | 100 | 0.03803 | | m | 0.03889 | 310 | 0.03887 | m | 0.04379 | 004 | 0.04381 | | st | 0.05061 | 320 | 0.05053 | w | 0.04647 | 111 | 0.04648 | | vw | 0.05763 | 211 | 0.05761 | vvw | 0.04892 | 102 | 0.04898 | | \mathbf{st} | 0.06613 | 410 | 0.06608 | st | 0.05415 | 031 | 0.05414 | | vw | 0.06921 | 221 | 0.06927 | vvw | 0.06088 | 120 | 0.06087 | | \mathbf{m} | 0.06991 | 330 | 0.06997 | st | 0.06657 | 024 | 0.06665 | | m | 0.07700 | 311 | 0.07704 | w | 0.06835 | 113 | 0.06832 | | \mathbf{w} | 0.07770 | 420 | 0.07774 | vvw | 0.07181 | 122 | 0.07183 | | st | 0.08869 | 321 | 0.08870 | m | 0.07412 | 015 | 0.07416 | | | | | | m | 0.07603 | 033 | 0.07604 | | | | | | \mathbf{m} | 0.08184 | 104 | 0.08184 | | | | | | st | 0.09213 | 131 | 0.09217 | | | | | | m | 0.10466 | 124 | 0.10468 | | | | | | | | | | | | | | | | | | | tained from single crystal data. As the powder pattern showed considerable line splitting, it was not indexed completely and is given here only for identification purposes. The structure of $\rm NaNb_2O_5F$ is of the tetragonal potassium bronze structure type. The detailed structure of the $\rm NaNb_6O_{15}F$ compound has been reported in an earlier publication. The Guinier X-ray powder patterns of the three compounds $Na_2Nb_2O_5F_2$, $NaNb_2O_5F$, and $NaNb_6O_{15}F$ are given in Tables 6, 7, and 8. $\it Table~9.$ Crystallographic constants and approximate temperatures of pre- | ounds. | $N-Nb_2O_6$ | | 28.51 | 3.830 | 17.48 | 190 | 120.80 | 1 | 4.31 | 850-990 | |---|--|--------|--------|--------|--------|--------|--------|---------------|-------------|-------------| | The armage temperatures of preparation for the various compounds. | $NaNb_{s}O_{1s}OH$ | !
! | 3.955 | 10.186 | 14.753 | i | İ | 4.67 | 4.68 | 500-700 | | aration for the | $\mathrm{Na_2Nb_4O_{11}}_{C2/c}$ | 10.040 | 10.040 | 6.162 | 12.745 | 106.22 | 1 | 4.75 | 4.82 | 500-700 | | atures of prepa | ${f NaNb_sO_{16}F} \ Amm~2$ | 3.949 | | 10.192 | 14.721 | 1 | | ļ | 4.70 | 900 - 1000 | | rinate temper | ${ m NaNb_2O_6F} \ P4/mbm$ | 12.355 | | 1 | 3.943 | 1 | ! | 3 | 4.25 | 800 - 900 | | ordda ace | Z | 12.91 | 7.45 | 10 94 | 19:24 | 90.0 | 4.00 | 4.18 | 01:1 | 800-900 | | | $ rac{\mathrm{NaNb_{13}O_{33}}}{C2/m}$ | 22.40 | 3.834 | 15.37 | 91 47 | 14:10 | 4.40 | 4.42 | 1100. 1900 | 0071 - 0011 | | | $egin{aligned} \mathrm{NaNb_3O_8} \\ Pba2 & \mathrm{or} \\ Pbam \end{aligned}$ | 12.372 | 37.10 | 3.954 | ŀ | 00 | 4.02 | 4.72 | 1100 - 1200 | | | | Space
group | a Å | 0 A | c Å | β | d. 1. | sgo | $d_{ m calc}$ | ၁့ | | ### DISCUSSION Crystallographic constants and approximate temperatures of preparation for the various compounds are given in Table 9. A general observation in the chemistry of the mixed niobium oxides is that a normal reaction temperature is around 1100-1200°C. The presence of fluorine in form of NbO₂F¹⁻³ or NaF and H₂O in the supercritical state lowers the reaction temperature with several hundred degrees centigrade. Different reaction mechanisms can be proposed and will shortly be published in a forthcoming paper. ## REFERENCES - 1. Andersson, S. and Åström, A. Acta Chem. Scand. 18 (1964) 2233. - 2. Andersson, S. Acta Chem. Scand. 18 (1964) 2339. - 3. Andersson, S. Acta Chem. Scand. 19 (1965) 1401. - Andersson, S. Acta Chem. Scand. 19 (1965) 557. Andersson, S. Acta Cryst. 16 (1963) A 21. Magnéli, A. Arkiv Kemi 1 (1949) 213. - 7. Jahnberg, L. To be published. - 8. Andersson, S. Acta Chem. Scand. 19 (1965) 2285. - 9. Andersson, S. Z. anorg. Chem. 351 (1967) 106. Received April 5, 1967.