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The NDDO and CNDO methods suggested by Pople et al. have
been analyzed using Lowdin’s procedure of symmetrical orthogonaliza-
tion. It is concluded that it is possible to reformulate the CNDO
method such that it becomes a linear method, correct to the first
order in the interatomic overlap integrals. Such a reformulation is
not possible for the NDDO method, except in very special cases.

Considerable attention has recently been paid to the problem of performing
approximate self-consistent molecular orbital calculations on complex
molecules. Encouraged by the success of the zero differential overlap (ZDO)
method as applied to aromatic systems, Pople ef al.!l have suggested two
approximate schemes in which all valence electrons may be considered: one
scheme based on the complete neglect of differential overlap (CNDO method),
and another scheme based on neglect only of diatomic differential overlap
(NDDO method). Methods similar to the NDDO have also been used by
various authors in the past, but the formulation by Pople et al. is especially
clear.

The difference between the extended methods and the conventional ZDO
method is that the former allow for several atomic orbitals per atomic center,
whereas only one orbital per center (a 2p,-orbital) is allowed in the latter. It
was pointed out by Lowdin ? more than ten years ago that although the ZDO
method is formulated as a zero order method, in which all overlap integrals
are neglected, it can be reformulated in terms of orthogonalized orbitals, so
that it becomes a linear method, ¢.e. a method which is correct through first
order terms in the interatomic overlap integrals. A thorough investigation in
this field has been undertaken by Fischer-Hjalmars.?

It is the purpose of the present paper to investigate whether the CNDO
and NDDO methods can also be reformulated so that they become linear in
the sense mentioned above. The conclusion is reached that the CNDO method
is linear, but certain deviations from spherical symmetry are neglected in the
Hartree-Fock potential. The more elaborate NDDO method can, however,
not be considered as linear, except in very special cases.
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MAIN FEATURES OF THE CNDO AND NDDO METHODS

In the LCAO MO description one represents the molecular orbitals of a
given molecule as linear combinations of atomic orbitals X,. One then encounters
the problem of evaluating the electrostatic interaction between charge distribu-
tions X,(1) X (1) and X,(2) %,(2), i.e. integrals of the form

[rs|tu) = [J%,(1)%,(1) ri; 7,(2) %,(2) drdr, (1)

The CNDO and NDDO approximations have to do with the evaluation of
such integrals. More specificly, the CNDO method assumes that the charge
distribution X X is zero unless X, and X, are identical, i.e.

[rsltu] = 6,5 Jm [rrltt] (2)

On the other hand, the NDDO method' retains X, X, if ¥, and ¥ belong to the
same atomic center, but neglects this distribution if the two orbitals belong
to different centers.

It was pointed out by Pople et al.,! that in order for the CNDO method to
give a description independent of the choice of coordinate systems on the
various atoms, it is necessary to replace the approximation (2) with

[rs|tu] = 6, 9y, [rr|i7] 3)

where Z, is an s-orbital with the same radial function as X,. The approxima-
tion (3) makes the CNDO method a very practical one for computations.

ORTHOGONALIZED ORBITALS

In order to throw light on the nature of the approximations of the previous
section we replace the original set of atomic orbitals %,, X,..., X,, with an ortho-
normal set ¥,’, %,,..., X,’, and we assume that this set has been obtained by
Lowdin’s method of symmetrical orthogonalization,* 7.e.

~%

gugxz glm
* % X)) = (X, %,.. %,) | 227 (4)
8,18 2 -S m
where
Srs = .f xf(l) xs(l)drl (5)

In a theory retaining only first order terms in the overlap integrals S, i.e.
a linear theory, we may write (for S, sufficiently small 4):

X =% —338, %;r=1,2..m (6)
sr
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To study the implications of eqn. (6) we confine ourselves, for the moment,
to a diatomic case in which there is one orbital X, on center a, and two mutu-
ally orthogonal orbitals, X,, and X;, on center b. The orthogonalized orbitals
are then

xa, = xa - % Sa,bl xbt - % Sa,b. xb’
Xy = Xy, — 38y, X, ™
Xb,’ = Ay, — ab, %q

and the charge distributions obtained by multiplying two of these orbitals
together may now be expanded on X, X,, and normalized distributions of the
type X%, %, and %, X,/S, . Retaining only first order terms in the overlap integrals
we obtain:

X/X' = XX when r and s refer to the same center

xa'xb,' — Xax,,l — %Sa,b, (xaxa -+- Z,,,Zb,) —_ % Sa,b, Zb‘xb,

X'k, = Xk, —  Sap, XX, + Xo2s) — % Sap X%, (8)

If it is assumed that the Mulliken approximation 5
XX =1 Su XX, + %%,) (9)

may be applied in the evaluation of two-electron integrals, we get, as far
as such integrals are concerned:

2/'%' = XX when r and s refer to the same center
XX, = — § 8ap, To i, (10)
o X, = — $85, %0,

It is noticed that the Mulliken approximation does not cause any of the
charge distributions in eqn. (10) to become zero, but they can all be expressed
in terms of one-center distributions.

Expressions similar to (10) can be derived in the general case with the
result that charge distributions X,’?,’ involving orbitals on different centers
do not vanish, as they do when there is only one atomic orbital per center.?
There is little justification for neglecting X, X, in eqn. (10), while retaining it
in other integrals, since this charge distribution can give rise to large integral
values, e.g. if X,, and %,, represent 2s- and 2p-orbitals, respectively.

On the background of eqn. (10) it is concluded that since the charge dis-
tributions %,'X%,’ and X,'%,’ depend on the overlap integrals of the system
to the first order, it is not possible, along the present lines, to reformulate
the NDDO method, so that it becomes linear. The only exceptions occur if
no two orbitals on the same center transform in the same way under the
symmetry operations of the molecule considered. Such a situation arises, for
instance, if one considers the m-orbitals of a diatomic molecule, but inclusion
of the ¢-orbitals leads to the complication inherent in eqn. (10), since s- and
pg-orbitals transform in the same way in the linear symmetry.

It will now be demonstrated that it is possible to construct a linear theory
by making consistent approximations in the Hartree-Fock-Roothaan scheme,
and that the resulting method corresponds to the CNDO method.
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DERIVATION OF THE CNDO METHOD

We assume that the molecule under consideration has a closed shell struc-
ture, i.e. the 2n electrons of the molecule reside in the » doubly occupied
molecular orbitals of the system, and we choose these to be the orthogonalized
orbitals of eqn. (6), ¢.e.

pi=2025i=12.mm>n (11)
1

The expression for the Hartree-Fock operator is in this description:

P = Heore 4 > Puu ([1#w] — Hw'|t]) (12)

where [|¢'u’] and [u’|t'] are Coulomb and exchange operators respectively
associated with X,'X,’, i.e.

6] p(1) = | %/(2) %,(2) ,ﬁ:- deyo(l) (13)

[w]£] p(1) = [ %/(2) 9(2) ri:; dry%,'(1) (14)

Py, is an element of the charge and bond-order matrix:
Pu=2 3 Cilu (15)
and Her includes the kinetic energy operator T and the potential (Coulomb

and exchange) from the core electrons. Adopting the Goeppert-Mayer, Sklar
approximation,® according to which the core potential is a sum of one-center

potentials ff\a associated with the various atoms a in the molecule, we have:

Hoe =T +5 7, (16)

For the moment we neglect the exchange terms [«’|¢'] in eqn. (12) and
define the operator

Fo=T+3 7,4+ 3 P [Itw] (17)
By inserting equations similar to (10) we get
Fo=T+3(V,+ 3 Biuw [Itu)) (18)
¢ tasta

where ¢, and u, refer to orbitals on center a, and the primes have been dropped
in the Coulomb operator [|f,u,], since this is now expressed in the original set
of orbitals %,, X,,..., X,. The coefficients B:,«, are, for ¢{ % u, functions of
the overlap integrals of the system. For ¢ = » we have, however:

B’asta = P‘a"a (19)
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The expression in brackets in eqn. (18) may be interpreted as the Coulomb
potential from atom a in situ. We proceed by replacing this potential with
its spherical average around a, and comment on this approximation later.
Excluding the possibility that two atomic orbitals on the same center have
the same angular dependence (like 2p and 3p), we get:

FO = T + z + z Pta"a [ltata]) (20)

ta
where, as previously, %;, denotes an s-orbital with the same radial function
as X,
We shall now consider matrix elements of Fo between the original, un-
symmetrized orbitals. For the matrix element of X,, with itself we get, from

7T and the part of I/f"\0 associated with center a:

(TalT + Valfa) + 'Z Pta"a [;a;alt;t;]

We have introduced the definition
(1T + V,l9) = [ )T ) + V(1) %(Dér, (21)
and utilized the fact that
[t ] = [RRIGL) (22)
However, Z,, cannot be replaced by %, in (r,|T + V,|r,), because T is a
differential operator and /I>“ includes important exchange terms.
The remaining terms in ﬁo contributing to (r,| Fy|r,) represent the electro-
static potential from atoms other than a. We replace this potential with its

spherical average around a and discuss the justification for this later. How-
ever, we do not evaluate this average explicitly, but utilize that we can take
the spherical average X, %,, of X, X, instead. Strictly speaking, this is only
true when exchange terms in the remaining core potentials are neglected, but
it is a very good approximation to do so. We obtain therefore:

(r|F0|r)_(r|T+V|r)+Z(r[V,,|r)+ZP,,[rr t1] (23)

According to eqn. (8) this is also the expression for (r,'|Fy|r,’).
Introducing similar approximations in evaluating (r,|Fy|s,) with r + s we
get from eqn. (8):
(r)' [ Fol8,)) = (r,| Fols,) = 0if r % s (24)

because there is no matrix element between X,, and Xs, in a spherically sym-
metric potential.
Finally, we find from eqn. (8) that

(Ta’lFolsb') = (ralT + Va + .V_bl'sb) - % S:a’sb {(:raIT + Vairu) +
(8| T + Vols) + (ralVel7,) + (81 V,15)} (25)

provided the Mulliken approximation (9) is used in evaluating integrals arising
N\ PA YA a
from that part of F, which does not include 7', ¥,, and V,.
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So far as the two-electron integrals are concerned, eqns. (23—25) represent
exactly what one would obtain by making the approximation

[r's'|tw] = 8,3, [7F|#] (26)
t.e. the CNDO approximation. However, we have so far not included the

exchange part of F in our analysis. It is now important that the approxima-

2\
tions made in treating F, fix the approximations to be made in treating the
exchange terms. We must use eqn. (26) for these terms also in order to ensure,
that ““an electron does not interact with itself”’. Self-interaction occurs if
the equation

([lpe] — [ol0]) 9(1) = 0 (27)

is not fulfilled. This equation ensures that a valence electron interacts with
exactly 2n—1 electrons, as it should.

Thus, by making suitable approximations in taking matrix elements of F(,
and lettmg the exchange terms follow the Coulomb terms in order to avoid
self-interaction, we have arrived at the following expressions for the matrix

elements of I/’\

(1P (r) = (T + Volr) + 3 CulVilr) + 3 P FFl6]

- % P'u"a [fafa:;a_fa] (28)
(r1F18,) = — & Prpsy [T,7,188,], 7 + 8 (29)
(r,)|F|8) = (r,/| Fo|8,") = } Prosy [TaTa]8:5] (30)

with (r,"|Fy|s,’) given by eqn. (25).
The equations (28— 30) show that the CNDO method suggested by Pople
et all can be interpreted as a linear method and the equations also supply

ey
theoretical expressions for the matrix elements of Here, They are derived
for the orthogonalization scheme (6), based on small overlap integrals. The
Mulliken approximation (9) has also been used along with the process of
spherical averaging. Some comments are necessary to justify the averaging
process, and we concentrate these in three points.

1. The spherical parts of the potentials considered are likely to be the
predominant parts.

2. The deviations from spherical symmetry are probably not well re-
presented by the Mulliken approximation (9). Hence, by only retaining the
spherical parts of the potentials, the consequences of that approximation are
taken.

3. Similar deviations from spherical symmetry are neglected in detailed
and successful calculations on solids.”

These points indicate that the CNDO scheme is likely to be a sound and
consistent scheme for approximate quantum chemical calculations on complex
molecules.

Eqgns. (28—30) provide theoretical expressions for the matrix elements of
the core operator. In the calculations by Pople et al. these matrix elements
are considered as parameters of the theory, but on the basis of the present
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analysis they may as well be calculated. From the conventional ZDO method
it is known that the two procedures yield very similar results. This conclusion
is important, because the number of parameters tends to become excessive
when atomic orbitals of high quantum numbers are involved.

In a forthcoming report # on molecular orbital theories of transition metal
complexes the theoretical expressions have been used for the matrix elements

of Here and it is also shown that the CNDO approximation may be justified
on the basis of other orthogonalization schemes than the symmetrical one.
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