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Theory of Ultrafiltration

HANS VINK

Institute of Physical Chemistry, University of Uppsala, Uppsala, Sweden

A theoretical study of ultrafiltration based on thermodynamics
of irreversible processes is presented. A formula giving the efficiency
of the ultrafiltration process in dilute solutions is derived. Relations
between ultrafiltration and osmotic experiments are considered and
a praocedure for the experimental verification of Onsager reciprocal
relations is indicated.

Recently there has been increased interest in the use of the process of ultra-
filtration through membranes as a means of separating molecularly dis-
persed solutes. Especially its application to desalination of water ™7 and its
use as a means of concentrating dilute solutions® have been considered.
Much of the progress in the experimental field has been due to novel techniques
of membrane preparation,;%? which has made membranes of high selectivity
available, and has made the process of practical interest.

In the present article some theoretical aspects of the process are considered.
The treatment is based on thermodynamics of irreversible processes and
is closely related to earlier work 112 on solute diffusion through osmotic
membranes.

Symbols

mass flow density of component i
chemical potential of component i
phenomenological coefficient
concentration independent phenomenological coefficient
weight fraction of component i
concentration of solute in solution (g/1)
partial specific volume of component i
molecular weight of component i

= hydrostatic pressure

thickness of membrane

solubility factor

reflextion coefficient

filtration pressure
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In the present treatment we will consider a two-component solution phase,
where component 1 is the solvent and component 2 the solute. In the mem-
brane phase, in addition, the membrane lattice is present as component 3.

The basic flow-equations then take the form

. d, d
h=—80n, d!:vl —0y Eﬂf

1 a (1)
72 = —0y dﬂl 922 dx2

where the reference frame is fixed in the membrane lattice.!
For the phenomenological coefficients 2,; the Onsager reciprocal relations

2 t:
( ) exis 912 = 921 (2)

However, in order to provide a basis for an experimental verification of
the reciprocal relations, the use of eqn. (2) will be refrained from in the present
treatment.

In order to make the integration of eqns. (1) possible the concentration
dependence of the phenomenological coefficients has to be taken explicitly
into account. This is done by a series expansion of the coefficients. Observing
that the flow of any component must vanish when its concentration is zero,
the expansions of the coefficients do not contain constant terms and hence

we may write 2., = Ly, ¢, -+ higher terms

215 = Ly 0405 + higher terms (3)
02,, = Ly, ¢,¢y + higher terms
02, = Ly, ¢y + higher terms

Further, the chemical potential gradient is split into a pressure term and
a purely chemical term:

dy
dz

—v +d"”- i=1,2 (4)

where the pressure-independent chemical potentials are connected via the
Gibbs-Duhem equation:

. s 4 dus,
6 fY o 2 o =0 (5)

For steady state conditions, with j, and j, constant across the membrane,
solutions of (1) may be obtained by introducing (3) and (4) into (1) and inte-
grating across the membrane. For dilute solutions we may neglect higher
than first order terms in ¢, and we then get

RT
j1@ = —Ly3(1—C3—0C5)(Apy,+v,4p)—Lyp(1—0y) ( Acz'*"vzczdp)

. - RT (6)
jol = —Lgy(1—C5)Co(Aps+v,4p)— Ly, (m‘dce‘l"”aazdp)
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We have here used the relations

d
duy, dp)dx — (1—8,—6,)(4 4 7
'[Cl(dx +vy az ( C3—Ca)(dpty,+v,4p) (7)
d
[ erca(¥he 40, dl’)dx — (1—5,)83(Apr,+0,4p) (8)
J dz ' dw
d
du,, dp)dx — (1—¢ <RT 4 5. A 9
_0[ 0102<Fx— + v, s (1—c3) -I\Tz Cat0sCe 4P (9)
d
dus, ‘ii?) ax = BT 4 Gy 10
6/"2(—(1—%— +v, 1 M, CotVaCadp (10)

In (9) and (10) we have used the following relation (expressed in weight
units)

RT
Moo = M9t M. In foc, (11)
2
with
fo=1-+acy+--- (12)

In these equations the barred quantities are concentration averages across
the membrane. Their exact evaluation requires detailed knowledge of con-
centration and pressure gradients in the membrane, but to a first order approxi-
mation they are equal to the mean concentration of the respective component
in the membrane.

Further, we observe that Au,, and Adc, refer to differences in y;, and ¢,
between the membrane boundaries, inside the membrane. They are easily
related to the differences in the corresponding quantities between the external
solutions on the two sides of the membrane. We find that in the case of 4u,,
the two quantities are equal if equilibrium conditions exist at the membrane
interfaces. Then

RT
Ap=— = v,4c¢ 13
1231 M2 1 ( )

In order to relate 4cy, to the corresponding difference in concentration
outside the membrane, we introduce the solubility factor y for dissolution
of the solute in the membrane phase. For equilibrium conditions we define
¢, (membrane)

¢4 (solution)

y(l—cy) = (14)

We then get
Aoy = Y(1—05)(0y" —¢y') = y(1—C5) vyde (15)
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where ¢,” and ¢, refer to the weight fractions of solute in the external solu-
tions on the two sides of the membrane. We have also

Gy = $y(1—cy) (¢’ + ¢;') = p(1—Cg)v,¢ (16)
where
¢ =c + {4c (17)

is the mean external concentration of solute.
With (13), (15), and (16) eqns. (6) take the form

, - _ RT — o BT -
j2d = —Lu'”l(l_‘03)(1—ch)(AP_WAc)_leJ’%(I—63)2(‘NT‘AG+%GAP>
2 2
RT RT s
izd = ——Lzl)m?l(l—EQ%(AI)—EAO)—-L22yv1(1—(_:3)<—M——Ac+vzédp)
2 2

We will now specify the experimental conditions for ultrafiltration. We
assume that the permeating solution on the low-pressure side immediately
leaves the membrane surface. In practice this means that the solution compart-
ment on the low-pressure side is very small (e.g. a membrane directly placed
on a porous supporting medium). We then have the relation

h_ea v _,_ 1
ja €y’ ¢y’ v,(c+4c)

Here the total mass flow j; + j, and the concentration ¢ + Ac are easily
measurable quantities. Hence, with the help of (19) the individual mass flows
may also be readily determined.

We may now eliminate j, and j, between (18) and (19) and thus get an
equation for the determination of Ac. For dilute solutions and pressure differ-
ences considerably higher than the osmotic pressure [R7'[M,|Ac|<<<|4p]|]
this equation takes a simple form:

4c Ly —Lgyy(1—C5)—Ligny(ve/v4)

c —2 2Ly, —Lgyy(1—C3) — Lggy(vg/v1) —2L4go( BT [ M,)(y[v,4D)

In analogy with the treatment in Ref. 12 we use the following expression
for Staverman’s reflexion coefficient o:

(19)

(20)

L L v
o=1— 22 y(1—G,)— 22y 2 21
Lll Y( 3) Lll }’ ”1 ( )
Introducing further the filtration pressure P, where
P=—4p (22)
we get
dc Ly, RT y

In the derivation of eqn. (23) the expression (17) for the mean concentra-
tion was used. If possible nonlinearity of the concentration gradient in the
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membrane is taken into account, the concentration average may be written

as follows
c=c¢+ (3 + &) 4e (24)
Instead of (23) we then get

de_ Ly, RT vy
—= 20/[1 + o0—2¢(1—0) + 2 oM, le] (25)

In these equations ¢ is a small quantity which may be evaluated it the
concentration gradient is known.

Eqn. (23) gives a measure of the efficiency of ultrafiltration experiments.
We find that the efficiency increases with increasing filtration pressure. This
is due to the fact that the ordinary diffusion, which tends to smooth out the
concentration difference across the membrane, is pressure independent and
hence its effect becomes less pronounced at high pressures. At low pressures
the effect of ordinary diffucion becomes dominant, however, and the efficiency
declines accordingly.

Eqn. (23) also provides a means of verifying Onsager reciprocal relations.
We have found that ultrafiltration and osmosis represent essentially different
situations in adapting eqns. (18) to experimental conditions. In the case of
osmotic experiments the pressure difference is small and hence in the dilute
solution approximation of (18) only the term associated with L,, gives a signifi-
cant contribution to the flow equations. The expression for ¢, derived in
Ref. 12, therefore contains the coefficient L,,. On the other hand, in the case
of ultrafiltration with high filtration pressures, we see from (20) that only
the term containing L,, is significant. Thus, comparing the values of ¢ obtained
from osmotic experiments with those obtained from ultrafiltration (eqn. (23))
we may get an experimental check of the reciprocal relations.

Alternatively, eqns. (18) may be used directly. From ultrafiltration measure-
ments with solutions of constant concentration but varying filtration pressure
a system of equations is obtained which may be solved for the phenomeno-
logical coefficients. Although this method is less sensitive than the preceding
one it has the advantage of using the same experimental arrangement in
all experiments.
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